x uchun yechish
x=\frac{\left(y+1\right)^{2}+4}{2}
y+1\geq 0
x uchun yechish (complex solution)
x=\frac{\left(y+1\right)^{2}+4}{2}
y=-1\text{ or }arg(y+1)<\pi
y uchun yechish (complex solution)
y=\sqrt{2\left(x-2\right)}-1
y uchun yechish
y=\sqrt{2\left(x-2\right)}-1
x\geq 2
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{2x-4}-1=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\sqrt{2x-4}=y+1
1 ni ikki tarafga qo’shing.
2x-4=\left(y+1\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x-4-\left(-4\right)=\left(y+1\right)^{2}-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
2x=\left(y+1\right)^{2}-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
2x=\left(y+1\right)^{2}+4
\left(y+1\right)^{2} dan -4 ni ayirish.
\frac{2x}{2}=\frac{\left(y+1\right)^{2}+4}{2}
Ikki tarafini 2 ga bo‘ling.
x=\frac{\left(y+1\right)^{2}+4}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x=\frac{\left(y+1\right)^{2}}{2}+2
\left(y+1\right)^{2}+4 ni 2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}