x uchun yechish (complex solution)
\left\{\begin{matrix}\\x=\frac{y^{2}}{6}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}\\x=\frac{y^{2}}{6}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right,
y uchun yechish (complex solution)
y=\sqrt{6x}
y=0
y=-\sqrt{6x}
y uchun yechish
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y=\sqrt{6x}\text{; }y=-\sqrt{6x}\text{, }&x\geq 0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
xy\times 6=y^{2}y
y^{2} hosil qilish uchun y va y ni ko'paytirish.
xy\times 6=y^{3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
6yx=y^{3}
Tenglama standart shaklda.
\frac{6yx}{6y}=\frac{y^{3}}{6y}
Ikki tarafini 6y ga bo‘ling.
x=\frac{y^{3}}{6y}
6y ga bo'lish 6y ga ko'paytirishni bekor qiladi.
x=\frac{y^{2}}{6}
y^{3} ni 6y ga bo'lish.
xy\times 6=y^{2}y
y^{2} hosil qilish uchun y va y ni ko'paytirish.
xy\times 6=y^{3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
6yx=y^{3}
Tenglama standart shaklda.
\frac{6yx}{6y}=\frac{y^{3}}{6y}
Ikki tarafini 6y ga bo‘ling.
x=\frac{y^{3}}{6y}
6y ga bo'lish 6y ga ko'paytirishni bekor qiladi.
x=\frac{y^{2}}{6}
y^{3} ni 6y ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}