x uchun yechish
x=12\sqrt{5}+28\approx 54,83281573
x=28-12\sqrt{5}\approx 1,16718427
Grafik
Baham ko'rish
Klipbordga nusxa olish
xx+x\left(-56\right)+64=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+x\left(-56\right)+64=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-56x+64=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 64}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -56 ni b va 64 ni c bilan almashtiring.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 64}}{2}
-56 kvadratini chiqarish.
x=\frac{-\left(-56\right)±\sqrt{3136-256}}{2}
-4 ni 64 marotabaga ko'paytirish.
x=\frac{-\left(-56\right)±\sqrt{2880}}{2}
3136 ni -256 ga qo'shish.
x=\frac{-\left(-56\right)±24\sqrt{5}}{2}
2880 ning kvadrat ildizini chiqarish.
x=\frac{56±24\sqrt{5}}{2}
-56 ning teskarisi 56 ga teng.
x=\frac{24\sqrt{5}+56}{2}
x=\frac{56±24\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 56 ni 24\sqrt{5} ga qo'shish.
x=12\sqrt{5}+28
56+24\sqrt{5} ni 2 ga bo'lish.
x=\frac{56-24\sqrt{5}}{2}
x=\frac{56±24\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 56 dan 24\sqrt{5} ni ayirish.
x=28-12\sqrt{5}
56-24\sqrt{5} ni 2 ga bo'lish.
x=12\sqrt{5}+28 x=28-12\sqrt{5}
Tenglama yechildi.
xx+x\left(-56\right)+64=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+x\left(-56\right)+64=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+x\left(-56\right)=-64
Ikkala tarafdan 64 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-56x=-64
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-56x+\left(-28\right)^{2}=-64+\left(-28\right)^{2}
-56 ni bo‘lish, x shartining koeffitsienti, 2 ga -28 olish uchun. Keyin, -28 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-56x+784=-64+784
-28 kvadratini chiqarish.
x^{2}-56x+784=720
-64 ni 784 ga qo'shish.
\left(x-28\right)^{2}=720
x^{2}-56x+784 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-28\right)^{2}}=\sqrt{720}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-28=12\sqrt{5} x-28=-12\sqrt{5}
Qisqartirish.
x=12\sqrt{5}+28 x=28-12\sqrt{5}
28 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}