Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x\sqrt{2}+65=0
x ga x-6\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+\left(-6\sqrt{2}\right)x+65=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{\left(-6\sqrt{2}\right)^{2}-4\times 65}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6\sqrt{2} ni b va 65 ni c bilan almashtiring.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-4\times 65}}{2}
-6\sqrt{2} kvadratini chiqarish.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-260}}{2}
-4 ni 65 marotabaga ko'paytirish.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{-188}}{2}
72 ni -260 ga qo'shish.
x=\frac{-\left(-6\sqrt{2}\right)±2\sqrt{47}i}{2}
-188 ning kvadrat ildizini chiqarish.
x=\frac{6\sqrt{2}±2\sqrt{47}i}{2}
-6\sqrt{2} ning teskarisi 6\sqrt{2} ga teng.
x=\frac{6\sqrt{2}+2\sqrt{47}i}{2}
x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} tenglamasini yeching, bunda ± musbat. 6\sqrt{2} ni 2i\sqrt{47} ga qo'shish.
x=3\sqrt{2}+\sqrt{47}i
6\sqrt{2}+2i\sqrt{47} ni 2 ga bo'lish.
x=\frac{-2\sqrt{47}i+6\sqrt{2}}{2}
x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} tenglamasini yeching, bunda ± manfiy. 6\sqrt{2} dan 2i\sqrt{47} ni ayirish.
x=-\sqrt{47}i+3\sqrt{2}
6\sqrt{2}-2i\sqrt{47} ni 2 ga bo'lish.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
Tenglama yechildi.
x^{2}-6x\sqrt{2}+65=0
x ga x-6\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-6x\sqrt{2}=-65
Ikkala tarafdan 65 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}+\left(-6\sqrt{2}\right)x=-65
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+\left(-6\sqrt{2}\right)x+\left(-3\sqrt{2}\right)^{2}=-65+\left(-3\sqrt{2}\right)^{2}
-6\sqrt{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -3\sqrt{2} olish uchun. Keyin, -3\sqrt{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\left(-6\sqrt{2}\right)x+18=-65+18
-3\sqrt{2} kvadratini chiqarish.
x^{2}+\left(-6\sqrt{2}\right)x+18=-47
-65 ni 18 ga qo'shish.
\left(x-3\sqrt{2}\right)^{2}=-47
x^{2}+\left(-6\sqrt{2}\right)x+18 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\sqrt{2}\right)^{2}}=\sqrt{-47}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3\sqrt{2}=\sqrt{47}i x-3\sqrt{2}=-\sqrt{47}i
Qisqartirish.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
3\sqrt{2} ni tenglamaning ikkala tarafiga qo'shish.