x uchun yechish (complex solution)
x=\frac{-5+\sqrt{15}i}{2}\approx -2,5+1,936491673i
x=\frac{-\sqrt{15}i-5}{2}\approx -2,5-1,936491673i
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x\left(-\frac{11x}{5}\right)+25\left(-\frac{11x}{5}\right)=110
Tenglamaning ikkala tarafini 5 ga ko'paytirish.
\frac{-5\times 11x}{5}x+25\left(-\frac{11x}{5}\right)=110
5\left(-\frac{11x}{5}\right) ni yagona kasrga aylantiring.
-11xx+25\left(-\frac{11x}{5}\right)=110
5 va 5 ni qisqartiring.
-11xx-5\times 11x=110
25 va 5 ichida eng katta umumiy 5 faktorini bekor qiling.
-11xx-55x=110
-11 hosil qilish uchun -1 va 11 ni ko'paytirish. -55 hosil qilish uchun -5 va 11 ni ko'paytirish.
-11x^{2}-55x=110
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-11x^{2}-55x-110=0
Ikkala tarafdan 110 ni ayirish.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-11\right)\left(-110\right)}}{2\left(-11\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -11 ni a, -55 ni b va -110 ni c bilan almashtiring.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-11\right)\left(-110\right)}}{2\left(-11\right)}
-55 kvadratini chiqarish.
x=\frac{-\left(-55\right)±\sqrt{3025+44\left(-110\right)}}{2\left(-11\right)}
-4 ni -11 marotabaga ko'paytirish.
x=\frac{-\left(-55\right)±\sqrt{3025-4840}}{2\left(-11\right)}
44 ni -110 marotabaga ko'paytirish.
x=\frac{-\left(-55\right)±\sqrt{-1815}}{2\left(-11\right)}
3025 ni -4840 ga qo'shish.
x=\frac{-\left(-55\right)±11\sqrt{15}i}{2\left(-11\right)}
-1815 ning kvadrat ildizini chiqarish.
x=\frac{55±11\sqrt{15}i}{2\left(-11\right)}
-55 ning teskarisi 55 ga teng.
x=\frac{55±11\sqrt{15}i}{-22}
2 ni -11 marotabaga ko'paytirish.
x=\frac{55+11\sqrt{15}i}{-22}
x=\frac{55±11\sqrt{15}i}{-22} tenglamasini yeching, bunda ± musbat. 55 ni 11i\sqrt{15} ga qo'shish.
x=\frac{-\sqrt{15}i-5}{2}
55+11i\sqrt{15} ni -22 ga bo'lish.
x=\frac{-11\sqrt{15}i+55}{-22}
x=\frac{55±11\sqrt{15}i}{-22} tenglamasini yeching, bunda ± manfiy. 55 dan 11i\sqrt{15} ni ayirish.
x=\frac{-5+\sqrt{15}i}{2}
55-11i\sqrt{15} ni -22 ga bo'lish.
x=\frac{-\sqrt{15}i-5}{2} x=\frac{-5+\sqrt{15}i}{2}
Tenglama yechildi.
5x\left(-\frac{11x}{5}\right)+25\left(-\frac{11x}{5}\right)=110
Tenglamaning ikkala tarafini 5 ga ko'paytirish.
\frac{-5\times 11x}{5}x+25\left(-\frac{11x}{5}\right)=110
5\left(-\frac{11x}{5}\right) ni yagona kasrga aylantiring.
-11xx+25\left(-\frac{11x}{5}\right)=110
5 va 5 ni qisqartiring.
-11xx-5\times 11x=110
25 va 5 ichida eng katta umumiy 5 faktorini bekor qiling.
-11xx-55x=110
-11 hosil qilish uchun -1 va 11 ni ko'paytirish. -55 hosil qilish uchun -5 va 11 ni ko'paytirish.
-11x^{2}-55x=110
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{-11x^{2}-55x}{-11}=\frac{110}{-11}
Ikki tarafini -11 ga bo‘ling.
x^{2}+\left(-\frac{55}{-11}\right)x=\frac{110}{-11}
-11 ga bo'lish -11 ga ko'paytirishni bekor qiladi.
x^{2}+5x=\frac{110}{-11}
-55 ni -11 ga bo'lish.
x^{2}+5x=-10
110 ni -11 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-10+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=-10+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=-\frac{15}{4}
-10 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=-\frac{15}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{15}i}{2} x+\frac{5}{2}=-\frac{\sqrt{15}i}{2}
Qisqartirish.
x=\frac{-5+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}