x uchun yechish
x=\frac{2y}{3}-\frac{2z}{3}+3
y uchun yechish
y=\frac{3x}{2}+z-\frac{9}{2}
Baham ko'rish
Klipbordga nusxa olish
x=4-\left(1+\frac{2}{3}z-\frac{2}{3}y\right)
1+\frac{2}{3}z-\frac{2}{3}y natijani olish uchun 3+2z-2y ning har bir ifodasini 3 ga bo‘ling.
x=4-1-\frac{2}{3}z+\frac{2}{3}y
1+\frac{2}{3}z-\frac{2}{3}y teskarisini topish uchun har birining teskarisini toping.
x=3-\frac{2}{3}z+\frac{2}{3}y
3 olish uchun 4 dan 1 ni ayirish.
x=4-\left(1+\frac{2}{3}z-\frac{2}{3}y\right)
1+\frac{2}{3}z-\frac{2}{3}y natijani olish uchun 3+2z-2y ning har bir ifodasini 3 ga bo‘ling.
x=4-1-\frac{2}{3}z+\frac{2}{3}y
1+\frac{2}{3}z-\frac{2}{3}y teskarisini topish uchun har birining teskarisini toping.
x=3-\frac{2}{3}z+\frac{2}{3}y
3 olish uchun 4 dan 1 ni ayirish.
3-\frac{2}{3}z+\frac{2}{3}y=x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{2}{3}z+\frac{2}{3}y=x-3
Ikkala tarafdan 3 ni ayirish.
\frac{2}{3}y=x-3+\frac{2}{3}z
\frac{2}{3}z ni ikki tarafga qo’shing.
\frac{2}{3}y=\frac{2z}{3}+x-3
Tenglama standart shaklda.
\frac{\frac{2}{3}y}{\frac{2}{3}}=\frac{\frac{2z}{3}+x-3}{\frac{2}{3}}
Tenglamaning ikki tarafini \frac{2}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
y=\frac{\frac{2z}{3}+x-3}{\frac{2}{3}}
\frac{2}{3} ga bo'lish \frac{2}{3} ga ko'paytirishni bekor qiladi.
y=\frac{3x}{2}+z-\frac{9}{2}
x-3+\frac{2z}{3} ni \frac{2}{3} ga bo'lish x-3+\frac{2z}{3} ga k'paytirish \frac{2}{3} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}