x uchun yechish
x=\frac{9+9m-3m^{2}}{2}
m uchun yechish (complex solution)
m=\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
m=-\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
m uchun yechish
m=\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
m=-\frac{\sqrt{189-24x}}{6}+\frac{3}{2}\text{, }x\leq \frac{63}{8}
Grafik
Baham ko'rish
Klipbordga nusxa olish
x=\left(6+2m-m^{2}\right)m\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
6 olish uchun 3 va 3'ni qo'shing.
x=\left(6m+2m^{2}-m^{3}\right)\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
6+2m-m^{2} ga m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
6m+2m^{2}-m^{3} ga \frac{1}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=3m+m^{2}-\frac{1}{2}m^{3}+\left(\frac{3}{2}-\frac{1}{2}m\right)\left(-m^{2}+2m+3\right)
\frac{1}{2} ga 3-m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}-\frac{1}{2}m\left(-m^{2}\right)-m^{2}
\frac{3}{2}-\frac{1}{2}m ga -m^{2}+2m+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}mm^{2}-m^{2}
\frac{1}{2} hosil qilish uchun -\frac{1}{2} va -1 ni ko'paytirish.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
x=\frac{9}{2}m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
\frac{9}{2}m ni olish uchun 3m va \frac{3}{2}m ni birlashtirish.
x=\frac{9}{2}m+m^{2}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}-m^{2}
0 ni olish uchun -\frac{1}{2}m^{3} va \frac{1}{2}m^{3} ni birlashtirish.
x=\frac{9}{2}m+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}
0 ni olish uchun m^{2} va -m^{2} ni birlashtirish.
x=\frac{9}{2}m-\frac{3}{2}m^{2}+\frac{9}{2}
-\frac{3}{2} hosil qilish uchun \frac{3}{2} va -1 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}