x uchun yechish (complex solution)
x=-2+\sqrt{2}i\approx -2+1,414213562i
x=-\sqrt{2}i-2\approx -2-1,414213562i
Grafik
Baham ko'rish
Klipbordga nusxa olish
xx+x\times 4+6=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+x\times 4+6=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+4x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\times 6}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 4 ni b va 6 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 6}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-8}}{2}
16 ni -24 ga qo'shish.
x=\frac{-4±2\sqrt{2}i}{2}
-8 ning kvadrat ildizini chiqarish.
x=\frac{-4+2\sqrt{2}i}{2}
x=\frac{-4±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± musbat. -4 ni 2i\sqrt{2} ga qo'shish.
x=-2+\sqrt{2}i
-4+2i\sqrt{2} ni 2 ga bo'lish.
x=\frac{-2\sqrt{2}i-4}{2}
x=\frac{-4±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 2i\sqrt{2} ni ayirish.
x=-\sqrt{2}i-2
-4-2i\sqrt{2} ni 2 ga bo'lish.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
Tenglama yechildi.
xx+x\times 4+6=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+x\times 4+6=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+x\times 4=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}+4x=-6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+4x+2^{2}=-6+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=-6+4
2 kvadratini chiqarish.
x^{2}+4x+4=-2
-6 ni 4 ga qo'shish.
\left(x+2\right)^{2}=-2
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{2}i x+2=-\sqrt{2}i
Qisqartirish.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}