x uchun yechish (complex solution)
x=\frac{-3\sqrt{7}i+1}{2}\approx 0,5-3,968626967i
Grafik
Baham ko'rish
Klipbordga nusxa olish
3\sqrt{x}=-\left(x+4\right)
Tenglamaning ikkala tarafidan x+4 ni ayirish.
3\sqrt{x}=-x-4
x+4 teskarisini topish uchun har birining teskarisini toping.
\left(3\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
3^{2}\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
\left(3\sqrt{x}\right)^{2} ni kengaytirish.
9\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9x=\left(-x-4\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
9x=x^{2}+8x+16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-x-4\right)^{2} kengaytirilishi uchun ishlating.
9x-x^{2}=8x+16
Ikkala tarafdan x^{2} ni ayirish.
9x-x^{2}-8x=16
Ikkala tarafdan 8x ni ayirish.
x-x^{2}=16
x ni olish uchun 9x va -8x ni birlashtirish.
x-x^{2}-16=0
Ikkala tarafdan 16 ni ayirish.
-x^{2}+x-16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 1 ni b va -16 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+4\left(-16\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-64}}{2\left(-1\right)}
4 ni -16 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-63}}{2\left(-1\right)}
1 ni -64 ga qo'shish.
x=\frac{-1±3\sqrt{7}i}{2\left(-1\right)}
-63 ning kvadrat ildizini chiqarish.
x=\frac{-1±3\sqrt{7}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-1+3\sqrt{7}i}{-2}
x=\frac{-1±3\sqrt{7}i}{-2} tenglamasini yeching, bunda ± musbat. -1 ni 3i\sqrt{7} ga qo'shish.
x=\frac{-3\sqrt{7}i+1}{2}
-1+3i\sqrt{7} ni -2 ga bo'lish.
x=\frac{-3\sqrt{7}i-1}{-2}
x=\frac{-1±3\sqrt{7}i}{-2} tenglamasini yeching, bunda ± manfiy. -1 dan 3i\sqrt{7} ni ayirish.
x=\frac{1+3\sqrt{7}i}{2}
-1-3i\sqrt{7} ni -2 ga bo'lish.
x=\frac{-3\sqrt{7}i+1}{2} x=\frac{1+3\sqrt{7}i}{2}
Tenglama yechildi.
\frac{-3\sqrt{7}i+1}{2}+3\sqrt{\frac{-3\sqrt{7}i+1}{2}}+4=0
x+3\sqrt{x}+4=0 tenglamasida x uchun \frac{-3\sqrt{7}i+1}{2} ni almashtiring.
0=0
Qisqartirish. x=\frac{-3\sqrt{7}i+1}{2} tenglamani qoniqtiradi.
\frac{1+3\sqrt{7}i}{2}+3\sqrt{\frac{1+3\sqrt{7}i}{2}}+4=0
x+3\sqrt{x}+4=0 tenglamasida x uchun \frac{1+3\sqrt{7}i}{2} ni almashtiring.
9+3i\times 7^{\frac{1}{2}}=0
Qisqartirish. x=\frac{1+3\sqrt{7}i}{2} qiymati bu tenglamani qoniqtirmaydi.
x=\frac{-3\sqrt{7}i+1}{2}
3\sqrt{x}=-x-4 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}