x uchun yechish
x=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{10}\left(-1-i\right)-2\right)}{8y}
y\neq 0
y uchun yechish
y=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{10}\left(-1-i\right)-2\right)}{8x}
x\neq 0
Baham ko'rish
Klipbordga nusxa olish
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ga \frac{-1-\sqrt{5i}}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} teskarisini topish uchun har birining teskarisini toping.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ga -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2yx=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Tenglama standart shaklda.
\frac{2yx}{2y}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
Ikki tarafini 2y ga bo‘ling.
x=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
2y ga bo'lish 2y ga ko'paytirishni bekor qiladi.
x=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8y}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ni 2y ga bo'lish.
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ga \frac{-1-\sqrt{5i}}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} teskarisini topish uchun har birining teskarisini toping.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ga -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Tenglama standart shaklda.
\frac{2xy}{2x}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
Ikki tarafini 2x ga bo‘ling.
y=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
y=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8x}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ni 2x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}