Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
y uchun yechish
Tick mark Image

Baham ko'rish

2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ga \frac{-1-\sqrt{5i}}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} teskarisini topish uchun har birining teskarisini toping.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ga -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2yx=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Tenglama standart shaklda.
\frac{2yx}{2y}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
Ikki tarafini 2y ga bo‘ling.
x=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
2y ga bo'lish 2y ga ko'paytirishni bekor qiladi.
x=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8y}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ni 2y ga bo'lish.
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ga \frac{-1-\sqrt{5i}}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} teskarisini topish uchun har birining teskarisini toping.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} natijani olish uchun -1-\sqrt{5i} ning har bir ifodasini 2 ga bo‘ling.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ga -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Tenglama standart shaklda.
\frac{2xy}{2x}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
Ikki tarafini 2x ga bo‘ling.
y=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
y=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8x}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ni 2x ga bo'lish.