Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-3=7x-20
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-3-7x=-20
Ikkala tarafdan 7x ni ayirish.
x^{2}-3-7x+20=0
20 ni ikki tarafga qo’shing.
x^{2}+17-7x=0
17 olish uchun -3 va 20'ni qo'shing.
x^{2}-7x+17=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 17}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 17 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 17}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-68}}{2}
-4 ni 17 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{-19}}{2}
49 ni -68 ga qo'shish.
x=\frac{-\left(-7\right)±\sqrt{19}i}{2}
-19 ning kvadrat ildizini chiqarish.
x=\frac{7±\sqrt{19}i}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{7+\sqrt{19}i}{2}
x=\frac{7±\sqrt{19}i}{2} tenglamasini yeching, bunda ± musbat. 7 ni i\sqrt{19} ga qo'shish.
x=\frac{-\sqrt{19}i+7}{2}
x=\frac{7±\sqrt{19}i}{2} tenglamasini yeching, bunda ± manfiy. 7 dan i\sqrt{19} ni ayirish.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
Tenglama yechildi.
x^{2}-3=7x-20
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-3-7x=-20
Ikkala tarafdan 7x ni ayirish.
x^{2}-7x=-20+3
3 ni ikki tarafga qo’shing.
x^{2}-7x=-17
-17 olish uchun -20 va 3'ni qo'shing.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-17+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-17+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=-\frac{19}{4}
-17 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=-\frac{19}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{\sqrt{19}i}{2} x-\frac{7}{2}=-\frac{\sqrt{19}i}{2}
Qisqartirish.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.