x uchun yechish (complex solution)
x=\frac{7+\sqrt{19}i}{2}\approx 3,5+2,179449472i
x=\frac{-\sqrt{19}i+7}{2}\approx 3,5-2,179449472i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-3=7x-20
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-3-7x=-20
Ikkala tarafdan 7x ni ayirish.
x^{2}-3-7x+20=0
20 ni ikki tarafga qo’shing.
x^{2}+17-7x=0
17 olish uchun -3 va 20'ni qo'shing.
x^{2}-7x+17=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 17}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 17 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 17}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-68}}{2}
-4 ni 17 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{-19}}{2}
49 ni -68 ga qo'shish.
x=\frac{-\left(-7\right)±\sqrt{19}i}{2}
-19 ning kvadrat ildizini chiqarish.
x=\frac{7±\sqrt{19}i}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{7+\sqrt{19}i}{2}
x=\frac{7±\sqrt{19}i}{2} tenglamasini yeching, bunda ± musbat. 7 ni i\sqrt{19} ga qo'shish.
x=\frac{-\sqrt{19}i+7}{2}
x=\frac{7±\sqrt{19}i}{2} tenglamasini yeching, bunda ± manfiy. 7 dan i\sqrt{19} ni ayirish.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
Tenglama yechildi.
x^{2}-3=7x-20
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-3-7x=-20
Ikkala tarafdan 7x ni ayirish.
x^{2}-7x=-20+3
3 ni ikki tarafga qo’shing.
x^{2}-7x=-17
-17 olish uchun -20 va 3'ni qo'shing.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-17+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-17+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=-\frac{19}{4}
-17 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=-\frac{19}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{\sqrt{19}i}{2} x-\frac{7}{2}=-\frac{\sqrt{19}i}{2}
Qisqartirish.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}