x d x = \quad d ( 2 x ^ { 2 } + 3 )
d uchun yechish (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\sqrt{3}i\text{ or }x=\sqrt{3}i\end{matrix}\right,
d uchun yechish
d=0
x uchun yechish (complex solution)
\left\{\begin{matrix}\\x=-\sqrt{3}i\text{; }x=\sqrt{3}i\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right,
x uchun yechish
x\in \mathrm{R}
d=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}d=d\left(2x^{2}+3\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}d=2dx^{2}+3d
d ga 2x^{2}+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}d-2dx^{2}=3d
Ikkala tarafdan 2dx^{2} ni ayirish.
-x^{2}d=3d
-x^{2}d ni olish uchun x^{2}d va -2dx^{2} ni birlashtirish.
-x^{2}d-3d=0
Ikkala tarafdan 3d ni ayirish.
\left(-x^{2}-3\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
d=0
0 ni -x^{2}-3 ga bo'lish.
x^{2}d=d\left(2x^{2}+3\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}d=2dx^{2}+3d
d ga 2x^{2}+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}d-2dx^{2}=3d
Ikkala tarafdan 2dx^{2} ni ayirish.
-x^{2}d=3d
-x^{2}d ni olish uchun x^{2}d va -2dx^{2} ni birlashtirish.
-x^{2}d-3d=0
Ikkala tarafdan 3d ni ayirish.
\left(-x^{2}-3\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
d=0
0 ni -x^{2}-3 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}