x_0 uchun yechish
x_{0}=1-\frac{1}{x}+\frac{1}{x^{2}}
x\neq 0
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4x_{0}-3}-1}{2\left(x_{0}-1\right)}\text{; }x=-\frac{\sqrt{4x_{0}-3}+1}{2\left(x_{0}-1\right)}\text{, }&x_{0}\neq 1\\x=1\text{, }&x_{0}=1\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{4x_{0}-3}-1}{2\left(x_{0}-1\right)}\text{; }x=-\frac{\sqrt{4x_{0}-3}+1}{2\left(x_{0}-1\right)}\text{, }&x_{0}\neq 1\text{ and }x_{0}\geq \frac{3}{4}\\x=1\text{, }&x_{0}=1\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
x_{0}x^{2}-xx+x=1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x_{0}x^{2}-x^{2}+x=1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x_{0}x^{2}+x=1+x^{2}
x^{2} ni ikki tarafga qo’shing.
x_{0}x^{2}=1+x^{2}-x
Ikkala tarafdan x ni ayirish.
x^{2}x_{0}=x^{2}-x+1
Tenglama standart shaklda.
\frac{x^{2}x_{0}}{x^{2}}=\frac{x^{2}-x+1}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
x_{0}=\frac{x^{2}-x+1}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
x_{0}=1-\frac{1}{x}+\frac{1}{x^{2}}
1+x^{2}-x ni x^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}