Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-7x-5x^{2}+10=0
-7x ni olish uchun x va -8x ni birlashtirish.
-5x^{2}-7x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-5\right)\times 10}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, -7 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-5\right)\times 10}}{2\left(-5\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+20\times 10}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+200}}{2\left(-5\right)}
20 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{249}}{2\left(-5\right)}
49 ni 200 ga qo'shish.
x=\frac{7±\sqrt{249}}{2\left(-5\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{249}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{\sqrt{249}+7}{-10}
x=\frac{7±\sqrt{249}}{-10} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{249} ga qo'shish.
x=\frac{-\sqrt{249}-7}{10}
7+\sqrt{249} ni -10 ga bo'lish.
x=\frac{7-\sqrt{249}}{-10}
x=\frac{7±\sqrt{249}}{-10} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{249} ni ayirish.
x=\frac{\sqrt{249}-7}{10}
7-\sqrt{249} ni -10 ga bo'lish.
x=\frac{-\sqrt{249}-7}{10} x=\frac{\sqrt{249}-7}{10}
Tenglama yechildi.
-7x-5x^{2}+10=0
-7x ni olish uchun x va -8x ni birlashtirish.
-7x-5x^{2}=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-5x^{2}-7x=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}-7x}{-5}=-\frac{10}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\left(-\frac{7}{-5}\right)x=-\frac{10}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{5}x=-\frac{10}{-5}
-7 ni -5 ga bo'lish.
x^{2}+\frac{7}{5}x=2
-10 ni -5 ga bo'lish.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=2+\left(\frac{7}{10}\right)^{2}
\frac{7}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{10} olish uchun. Keyin, \frac{7}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{5}x+\frac{49}{100}=2+\frac{49}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{10} kvadratini chiqarish.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{249}{100}
2 ni \frac{49}{100} ga qo'shish.
\left(x+\frac{7}{10}\right)^{2}=\frac{249}{100}
x^{2}+\frac{7}{5}x+\frac{49}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{\frac{249}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{10}=\frac{\sqrt{249}}{10} x+\frac{7}{10}=-\frac{\sqrt{249}}{10}
Qisqartirish.
x=\frac{\sqrt{249}-7}{10} x=\frac{-\sqrt{249}-7}{10}
Tenglamaning ikkala tarafidan \frac{7}{10} ni ayirish.