Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-3y=7,3x+3y=9
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x-3y=7
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=3y+7
3y ni tenglamaning ikkala tarafiga qo'shish.
3\left(3y+7\right)+3y=9
3y+7 ni x uchun boshqa tenglamada almashtirish, 3x+3y=9.
9y+21+3y=9
3 ni 3y+7 marotabaga ko'paytirish.
12y+21=9
9y ni 3y ga qo'shish.
12y=-12
Tenglamaning ikkala tarafidan 21 ni ayirish.
y=-1
Ikki tarafini 12 ga bo‘ling.
x=3\left(-1\right)+7
-1 ni y uchun x=3y+7 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-3+7
3 ni -1 marotabaga ko'paytirish.
x=4
7 ni -3 ga qo'shish.
x=4,y=-1
Tizim hal qilindi.
x-3y=7,3x+3y=9
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}1&-3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
\left(\begin{matrix}1&-3\\3&3\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 3\right)}&-\frac{-3}{3-\left(-3\times 3\right)}\\-\frac{3}{3-\left(-3\times 3\right)}&\frac{1}{3-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 7+\frac{1}{4}\times 9\\-\frac{1}{4}\times 7+\frac{1}{12}\times 9\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=4,y=-1
x va y matritsa elementlarini chiqarib olish.
x-3y=7,3x+3y=9
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3x+3\left(-3\right)y=3\times 7,3x+3y=9
x va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
3x-9y=21,3x+3y=9
Qisqartirish.
3x-3x-9y-3y=21-9
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3x-9y=21 dan 3x+3y=9 ni ayirish.
-9y-3y=21-9
3x ni -3x ga qo'shish. 3x va -3x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-12y=21-9
-9y ni -3y ga qo'shish.
-12y=12
21 ni -9 ga qo'shish.
y=-1
Ikki tarafini -12 ga bo‘ling.
3x+3\left(-1\right)=9
-1 ni y uchun 3x+3y=9 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x-3=9
3 ni -1 marotabaga ko'paytirish.
3x=12
3 ni tenglamaning ikkala tarafiga qo'shish.
x=4
Ikki tarafini 3 ga bo‘ling.
x=4,y=-1
Tizim hal qilindi.