Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ni olish uchun -2x va -3x ni birlashtirish.
x^{2}-5x+6=11-5x+10
x-2 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=21-5x
21 olish uchun 11 va 10'ni qo'shing.
x^{2}-5x+6+5x=21
5x ni ikki tarafga qo’shing.
x^{2}+6=21
0 ni olish uchun -5x va 5x ni birlashtirish.
x^{2}=21-6
Ikkala tarafdan 6 ni ayirish.
x^{2}=15
15 olish uchun 21 dan 6 ni ayirish.
x=\sqrt{15} x=-\sqrt{15}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ni olish uchun -2x va -3x ni birlashtirish.
x^{2}-5x+6=11-5x+10
x-2 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=21-5x
21 olish uchun 11 va 10'ni qo'shing.
x^{2}-5x+6-21=-5x
Ikkala tarafdan 21 ni ayirish.
x^{2}-5x-15=-5x
-15 olish uchun 6 dan 21 ni ayirish.
x^{2}-5x-15+5x=0
5x ni ikki tarafga qo’shing.
x^{2}-15=0
0 ni olish uchun -5x va 5x ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -15 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-15\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{60}}{2}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{15}}{2}
60 ning kvadrat ildizini chiqarish.
x=\sqrt{15}
x=\frac{0±2\sqrt{15}}{2} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{15}
x=\frac{0±2\sqrt{15}}{2} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{15} x=-\sqrt{15}
Tenglama yechildi.