x uchun yechish
x=\sqrt{15}\approx 3,872983346
x=-\sqrt{15}\approx -3,872983346
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ni olish uchun -2x va -3x ni birlashtirish.
x^{2}-5x+6=11-5x+10
x-2 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=21-5x
21 olish uchun 11 va 10'ni qo'shing.
x^{2}-5x+6+5x=21
5x ni ikki tarafga qo’shing.
x^{2}+6=21
0 ni olish uchun -5x va 5x ni birlashtirish.
x^{2}=21-6
Ikkala tarafdan 6 ni ayirish.
x^{2}=15
15 olish uchun 21 dan 6 ni ayirish.
x=\sqrt{15} x=-\sqrt{15}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ni olish uchun -2x va -3x ni birlashtirish.
x^{2}-5x+6=11-5x+10
x-2 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+6=21-5x
21 olish uchun 11 va 10'ni qo'shing.
x^{2}-5x+6-21=-5x
Ikkala tarafdan 21 ni ayirish.
x^{2}-5x-15=-5x
-15 olish uchun 6 dan 21 ni ayirish.
x^{2}-5x-15+5x=0
5x ni ikki tarafga qo’shing.
x^{2}-15=0
0 ni olish uchun -5x va 5x ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -15 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-15\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{60}}{2}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{15}}{2}
60 ning kvadrat ildizini chiqarish.
x=\sqrt{15}
x=\frac{0±2\sqrt{15}}{2} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{15}
x=\frac{0±2\sqrt{15}}{2} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{15} x=-\sqrt{15}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}