Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-2y=-2,x+2y=10
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x-2y=-2
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=2y-2
2y ni tenglamaning ikkala tarafiga qo'shish.
2y-2+2y=10
-2+2y ni x uchun boshqa tenglamada almashtirish, x+2y=10.
4y-2=10
2y ni 2y ga qo'shish.
4y=12
2 ni tenglamaning ikkala tarafiga qo'shish.
y=3
Ikki tarafini 4 ga bo‘ling.
x=2\times 3-2
3 ni y uchun x=2y-2 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=6-2
2 ni 3 marotabaga ko'paytirish.
x=4
-2 ni 6 ga qo'shish.
x=4,y=3
Tizim hal qilindi.
x-2y=-2,x+2y=10
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\10\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-2}{2-\left(-2\right)}\\-\frac{1}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 10\\-\frac{1}{4}\left(-2\right)+\frac{1}{4}\times 10\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=4,y=3
x va y matritsa elementlarini chiqarib olish.
x-2y=-2,x+2y=10
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
x-x-2y-2y=-2-10
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali x-2y=-2 dan x+2y=10 ni ayirish.
-2y-2y=-2-10
x ni -x ga qo'shish. x va -x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-4y=-2-10
-2y ni -2y ga qo'shish.
-4y=-12
-2 ni -10 ga qo'shish.
y=3
Ikki tarafini -4 ga bo‘ling.
x+2\times 3=10
3 ni y uchun x+2y=10 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x+6=10
2 ni 3 marotabaga ko'paytirish.
x=4
Tenglamaning ikkala tarafidan 6 ni ayirish.
x=4,y=3
Tizim hal qilindi.