Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-1\right)x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-1 ga ko'paytirish.
x^{2}-x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x-x+1=3x\left(x-1\right)+1
x-1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x+1=3x\left(x-1\right)+1
-2x ni olish uchun -x va -x ni birlashtirish.
x^{2}-2x+1=3x^{2}-3x+1
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x+1-3x^{2}=-3x+1
Ikkala tarafdan 3x^{2} ni ayirish.
-2x^{2}-2x+1=-3x+1
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
-2x^{2}-2x+1+3x=1
3x ni ikki tarafga qo’shing.
-2x^{2}+x+1=1
x ni olish uchun -2x va 3x ni birlashtirish.
-2x^{2}+x+1-1=0
Ikkala tarafdan 1 ni ayirish.
-2x^{2}+x=0
0 olish uchun 1 dan 1 ni ayirish.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 1 ni b va 0 ni c bilan almashtiring.
x=\frac{-1±1}{2\left(-2\right)}
1^{2} ning kvadrat ildizini chiqarish.
x=\frac{-1±1}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{0}{-4}
x=\frac{-1±1}{-4} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
x=0
0 ni -4 ga bo'lish.
x=-\frac{2}{-4}
x=\frac{-1±1}{-4} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
x=\frac{1}{2}
\frac{-2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=\frac{1}{2}
Tenglama yechildi.
\left(x-1\right)x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-1 ga ko'paytirish.
x^{2}-x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x-x+1=3x\left(x-1\right)+1
x-1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x+1=3x\left(x-1\right)+1
-2x ni olish uchun -x va -x ni birlashtirish.
x^{2}-2x+1=3x^{2}-3x+1
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x+1-3x^{2}=-3x+1
Ikkala tarafdan 3x^{2} ni ayirish.
-2x^{2}-2x+1=-3x+1
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
-2x^{2}-2x+1+3x=1
3x ni ikki tarafga qo’shing.
-2x^{2}+x+1=1
x ni olish uchun -2x va 3x ni birlashtirish.
-2x^{2}+x=1-1
Ikkala tarafdan 1 ni ayirish.
-2x^{2}+x=0
0 olish uchun 1 dan 1 ni ayirish.
\frac{-2x^{2}+x}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{1}{-2}x=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{0}{-2}
1 ni -2 ga bo'lish.
x^{2}-\frac{1}{2}x=0
0 ni -2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Qisqartirish.
x=\frac{1}{2} x=0
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.