Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

40000x-98x^{2}=0
Tenglamaning ikkala tarafini 40000 ga ko'paytirish.
x\left(40000-98x\right)=0
x omili.
x=0 x=\frac{20000}{49}
Tenglamani yechish uchun x=0 va 40000-98x=0 ni yeching.
40000x-98x^{2}=0
Tenglamaning ikkala tarafini 40000 ga ko'paytirish.
-98x^{2}+40000x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40000±\sqrt{40000^{2}}}{2\left(-98\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -98 ni a, 40000 ni b va 0 ni c bilan almashtiring.
x=\frac{-40000±40000}{2\left(-98\right)}
40000^{2} ning kvadrat ildizini chiqarish.
x=\frac{-40000±40000}{-196}
2 ni -98 marotabaga ko'paytirish.
x=\frac{0}{-196}
x=\frac{-40000±40000}{-196} tenglamasini yeching, bunda ± musbat. -40000 ni 40000 ga qo'shish.
x=0
0 ni -196 ga bo'lish.
x=-\frac{80000}{-196}
x=\frac{-40000±40000}{-196} tenglamasini yeching, bunda ± manfiy. -40000 dan 40000 ni ayirish.
x=\frac{20000}{49}
\frac{-80000}{-196} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=\frac{20000}{49}
Tenglama yechildi.
40000x-98x^{2}=0
Tenglamaning ikkala tarafini 40000 ga ko'paytirish.
-98x^{2}+40000x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-98x^{2}+40000x}{-98}=\frac{0}{-98}
Ikki tarafini -98 ga bo‘ling.
x^{2}+\frac{40000}{-98}x=\frac{0}{-98}
-98 ga bo'lish -98 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{20000}{49}x=\frac{0}{-98}
\frac{40000}{-98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{20000}{49}x=0
0 ni -98 ga bo'lish.
x^{2}-\frac{20000}{49}x+\left(-\frac{10000}{49}\right)^{2}=\left(-\frac{10000}{49}\right)^{2}
-\frac{20000}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{10000}{49} olish uchun. Keyin, -\frac{10000}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{20000}{49}x+\frac{100000000}{2401}=\frac{100000000}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10000}{49} kvadratini chiqarish.
\left(x-\frac{10000}{49}\right)^{2}=\frac{100000000}{2401}
x^{2}-\frac{20000}{49}x+\frac{100000000}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{10000}{49}\right)^{2}}=\sqrt{\frac{100000000}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{10000}{49}=\frac{10000}{49} x-\frac{10000}{49}=-\frac{10000}{49}
Qisqartirish.
x=\frac{20000}{49} x=0
\frac{10000}{49} ni tenglamaning ikkala tarafiga qo'shish.