x uchun yechish
x=-\frac{1}{2}=-0,5
x=\frac{1}{2}=0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(2x+3\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
x qiymati -\frac{3}{2} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(2x+3\right) ga, 2,2x+3 ning eng kichik karralisiga ko‘paytiring.
\left(4x+6\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
2 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
4x+6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x-3\left(2x+3\right)+2\times 4=0
-3 hosil qilish uchun 2 va -\frac{3}{2} ni ko'paytirish.
4x^{2}+6x-6x-9+2\times 4=0
-3 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-9+2\times 4=0
0 ni olish uchun 6x va -6x ni birlashtirish.
4x^{2}-9+8=0
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
4x^{2}-1=0
-1 olish uchun -9 va 8'ni qo'shing.
\left(2x-1\right)\left(2x+1\right)=0
Hisoblang: 4x^{2}-1. 4x^{2}-1 ni \left(2x\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{2} x=-\frac{1}{2}
Tenglamani yechish uchun 2x-1=0 va 2x+1=0 ni yeching.
2\left(2x+3\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
x qiymati -\frac{3}{2} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(2x+3\right) ga, 2,2x+3 ning eng kichik karralisiga ko‘paytiring.
\left(4x+6\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
2 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
4x+6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x-3\left(2x+3\right)+2\times 4=0
-3 hosil qilish uchun 2 va -\frac{3}{2} ni ko'paytirish.
4x^{2}+6x-6x-9+2\times 4=0
-3 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-9+2\times 4=0
0 ni olish uchun 6x va -6x ni birlashtirish.
4x^{2}-9+8=0
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
4x^{2}-1=0
-1 olish uchun -9 va 8'ni qo'shing.
4x^{2}=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{1}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{1}{2} x=-\frac{1}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2\left(2x+3\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
x qiymati -\frac{3}{2} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(2x+3\right) ga, 2,2x+3 ning eng kichik karralisiga ko‘paytiring.
\left(4x+6\right)x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
2 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x+2\left(2x+3\right)\left(-\frac{3}{2}\right)+2\times 4=0
4x+6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+6x-3\left(2x+3\right)+2\times 4=0
-3 hosil qilish uchun 2 va -\frac{3}{2} ni ko'paytirish.
4x^{2}+6x-6x-9+2\times 4=0
-3 ga 2x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-9+2\times 4=0
0 ni olish uchun 6x va -6x ni birlashtirish.
4x^{2}-9+8=0
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
4x^{2}-1=0
-1 olish uchun -9 va 8'ni qo'shing.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-1\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-1\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-1\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{16}}{2\times 4}
-16 ni -1 marotabaga ko'paytirish.
x=\frac{0±4}{2\times 4}
16 ning kvadrat ildizini chiqarish.
x=\frac{0±4}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{1}{2}
x=\frac{0±4}{8} tenglamasini yeching, bunda ± musbat. \frac{4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{1}{2}
x=\frac{0±4}{8} tenglamasini yeching, bunda ± manfiy. \frac{-4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{2} x=-\frac{1}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}