Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-5x+2\left(x-1\right)=x+1
x ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+2x-2=x+1
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-2=x+1
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x-2-x=1
Ikkala tarafdan x ni ayirish.
x^{2}-4x-2=1
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x-2-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-4x-3=0
-3 olish uchun -2 dan 1 ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{28}}{2}
16 ni 12 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{7}}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{2\sqrt{7}+4}{2}
x=\frac{4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}+2
4+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{4-2\sqrt{7}}{2}
x=\frac{4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{7} ni ayirish.
x=2-\sqrt{7}
4-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}+2 x=2-\sqrt{7}
Tenglama yechildi.
x^{2}-5x+2\left(x-1\right)=x+1
x ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-5x+2x-2=x+1
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-2=x+1
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x-2-x=1
Ikkala tarafdan x ni ayirish.
x^{2}-4x-2=1
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x=1+2
2 ni ikki tarafga qo’shing.
x^{2}-4x=3
3 olish uchun 1 va 2'ni qo'shing.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=3+4
-2 kvadratini chiqarish.
x^{2}-4x+4=7
3 ni 4 ga qo'shish.
\left(x-2\right)^{2}=7
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\sqrt{7} x-2=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}+2 x=2-\sqrt{7}
2 ni tenglamaning ikkala tarafiga qo'shish.