y uchun yechish
y=x^{2}+x-3
x uchun yechish (complex solution)
x=\frac{-\sqrt{4y+13}-1}{2}
x=\frac{\sqrt{4y+13}-1}{2}
x uchun yechish
x=\frac{-\sqrt{4y+13}-1}{2}
x=\frac{\sqrt{4y+13}-1}{2}\text{, }y\geq -\frac{13}{4}
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x-x^{2}+2\left(y-3x\right)=\left(x+3\right)\left(x-2\right)
x ga 5-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-x^{2}+2y-6x=\left(x+3\right)\left(x-2\right)
2 ga y-3x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x-x^{2}+2y=\left(x+3\right)\left(x-2\right)
-x ni olish uchun 5x va -6x ni birlashtirish.
-x-x^{2}+2y=x^{2}+x-6
x+3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-x^{2}+2y=x^{2}+x-6+x
x ni ikki tarafga qo’shing.
-x^{2}+2y=x^{2}+2x-6
2x ni olish uchun x va x ni birlashtirish.
2y=x^{2}+2x-6+x^{2}
x^{2} ni ikki tarafga qo’shing.
2y=2x^{2}+2x-6
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
\frac{2y}{2}=\frac{2x^{2}+2x-6}{2}
Ikki tarafini 2 ga bo‘ling.
y=\frac{2x^{2}+2x-6}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
y=x^{2}+x-3
2x^{2}+2x-6 ni 2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}