Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

16x-x^{2}-120=0
x ga 16-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}+16x-120=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 16 ni b va -120 ni c bilan almashtiring.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+4\left(-120\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256-480}}{2\left(-1\right)}
4 ni -120 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{-224}}{2\left(-1\right)}
256 ni -480 ga qo'shish.
x=\frac{-16±4\sqrt{14}i}{2\left(-1\right)}
-224 ning kvadrat ildizini chiqarish.
x=\frac{-16±4\sqrt{14}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-16+4\sqrt{14}i}{-2}
x=\frac{-16±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± musbat. -16 ni 4i\sqrt{14} ga qo'shish.
x=-2\sqrt{14}i+8
-16+4i\sqrt{14} ni -2 ga bo'lish.
x=\frac{-4\sqrt{14}i-16}{-2}
x=\frac{-16±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± manfiy. -16 dan 4i\sqrt{14} ni ayirish.
x=8+2\sqrt{14}i
-16-4i\sqrt{14} ni -2 ga bo'lish.
x=-2\sqrt{14}i+8 x=8+2\sqrt{14}i
Tenglama yechildi.
16x-x^{2}-120=0
x ga 16-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x-x^{2}=120
120 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x^{2}+16x=120
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+16x}{-1}=\frac{120}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{16}{-1}x=\frac{120}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-16x=\frac{120}{-1}
16 ni -1 ga bo'lish.
x^{2}-16x=-120
120 ni -1 ga bo'lish.
x^{2}-16x+\left(-8\right)^{2}=-120+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-120+64
-8 kvadratini chiqarish.
x^{2}-16x+64=-56
-120 ni 64 ga qo'shish.
\left(x-8\right)^{2}=-56
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{-56}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=2\sqrt{14}i x-8=-2\sqrt{14}i
Qisqartirish.
x=8+2\sqrt{14}i x=-2\sqrt{14}i+8
8 ni tenglamaning ikkala tarafiga qo'shish.