Baholash
\frac{19ax}{84}-x^{2}
Kengaytirish
\frac{19ax}{84}-x^{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
x ga \frac{1}{4}a-\frac{3}{2}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
\frac{2}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{10}{9} ga -\frac{9}{20}x^{2}+\frac{3}{2}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{5}{7}a ga \frac{1}{5}x-\frac{7}{3}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
\frac{3}{28}xa ni olish uchun \frac{1}{4}xa va -\frac{1}{7}ax ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-x^{2} ni olish uchun -\frac{3}{2}x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
0 ni olish uchun \frac{5}{3}a^{2} va -\frac{5}{3}a^{2} ni birlashtirish.
\frac{19}{84}xa-x^{2}
\frac{19}{84}xa ni olish uchun \frac{3}{28}xa va \frac{5}{42}ax ni birlashtirish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
x ga \frac{1}{4}a-\frac{3}{2}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
\frac{2}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{10}{9} ga -\frac{9}{20}x^{2}+\frac{3}{2}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{5}{7}a ga \frac{1}{5}x-\frac{7}{3}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
\frac{3}{28}xa ni olish uchun \frac{1}{4}xa va -\frac{1}{7}ax ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-x^{2} ni olish uchun -\frac{3}{2}x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
0 ni olish uchun \frac{5}{3}a^{2} va -\frac{5}{3}a^{2} ni birlashtirish.
\frac{19}{84}xa-x^{2}
\frac{19}{84}xa ni olish uchun \frac{3}{28}xa va \frac{5}{42}ax ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}