Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
x ga \frac{1}{4}a-\frac{3}{2}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
\frac{2}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{10}{9} ga -\frac{9}{20}x^{2}+\frac{3}{2}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{5}{7}a ga \frac{1}{5}x-\frac{7}{3}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
\frac{3}{28}xa ni olish uchun \frac{1}{4}xa va -\frac{1}{7}ax ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-x^{2} ni olish uchun -\frac{3}{2}x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
0 ni olish uchun \frac{5}{3}a^{2} va -\frac{5}{3}a^{2} ni birlashtirish.
\frac{19}{84}xa-x^{2}
\frac{19}{84}xa ni olish uchun \frac{3}{28}xa va \frac{5}{42}ax ni birlashtirish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
x ga \frac{1}{4}a-\frac{3}{2}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
\frac{2}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{10}{9} ga -\frac{9}{20}x^{2}+\frac{3}{2}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-\frac{5}{7}a ga \frac{1}{5}x-\frac{7}{3}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
\frac{3}{28}xa ni olish uchun \frac{1}{4}xa va -\frac{1}{7}ax ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
-x^{2} ni olish uchun -\frac{3}{2}x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
0 ni olish uchun \frac{5}{3}a^{2} va -\frac{5}{3}a^{2} ni birlashtirish.
\frac{19}{84}xa-x^{2}
\frac{19}{84}xa ni olish uchun \frac{3}{28}xa va \frac{5}{42}ax ni birlashtirish.