x uchun yechish
x=\sqrt{19}+20\approx 24,358898944
x=20-\sqrt{19}\approx 15,641101056
Grafik
Baham ko'rish
Klipbordga nusxa olish
40x-x^{2}=381
x ga 40-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
40x-x^{2}-381=0
Ikkala tarafdan 381 ni ayirish.
-x^{2}+40x-381=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-381\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 40 ni b va -381 ni c bilan almashtiring.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-381\right)}}{2\left(-1\right)}
40 kvadratini chiqarish.
x=\frac{-40±\sqrt{1600+4\left(-381\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{1600-1524}}{2\left(-1\right)}
4 ni -381 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{76}}{2\left(-1\right)}
1600 ni -1524 ga qo'shish.
x=\frac{-40±2\sqrt{19}}{2\left(-1\right)}
76 ning kvadrat ildizini chiqarish.
x=\frac{-40±2\sqrt{19}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{19}-40}{-2}
x=\frac{-40±2\sqrt{19}}{-2} tenglamasini yeching, bunda ± musbat. -40 ni 2\sqrt{19} ga qo'shish.
x=20-\sqrt{19}
-40+2\sqrt{19} ni -2 ga bo'lish.
x=\frac{-2\sqrt{19}-40}{-2}
x=\frac{-40±2\sqrt{19}}{-2} tenglamasini yeching, bunda ± manfiy. -40 dan 2\sqrt{19} ni ayirish.
x=\sqrt{19}+20
-40-2\sqrt{19} ni -2 ga bo'lish.
x=20-\sqrt{19} x=\sqrt{19}+20
Tenglama yechildi.
40x-x^{2}=381
x ga 40-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}+40x=381
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{381}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{40}{-1}x=\frac{381}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-40x=\frac{381}{-1}
40 ni -1 ga bo'lish.
x^{2}-40x=-381
381 ni -1 ga bo'lish.
x^{2}-40x+\left(-20\right)^{2}=-381+\left(-20\right)^{2}
-40 ni bo‘lish, x shartining koeffitsienti, 2 ga -20 olish uchun. Keyin, -20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-40x+400=-381+400
-20 kvadratini chiqarish.
x^{2}-40x+400=19
-381 ni 400 ga qo'shish.
\left(x-20\right)^{2}=19
x^{2}-40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-20\right)^{2}}=\sqrt{19}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-20=\sqrt{19} x-20=-\sqrt{19}
Qisqartirish.
x=\sqrt{19}+20 x=20-\sqrt{19}
20 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}