Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+x=2256
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-2256=0
Ikkala tarafdan 2256 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-2256\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -2256 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-2256\right)}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+9024}}{2}
-4 ni -2256 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{9025}}{2}
1 ni 9024 ga qo'shish.
x=\frac{-1±95}{2}
9025 ning kvadrat ildizini chiqarish.
x=\frac{94}{2}
x=\frac{-1±95}{2} tenglamasini yeching, bunda ± musbat. -1 ni 95 ga qo'shish.
x=47
94 ni 2 ga bo'lish.
x=-\frac{96}{2}
x=\frac{-1±95}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 95 ni ayirish.
x=-48
-96 ni 2 ga bo'lish.
x=47 x=-48
Tenglama yechildi.
x^{2}+x=2256
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2256+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=2256+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{9025}{4}
2256 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{9025}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9025}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{95}{2} x+\frac{1}{2}=-\frac{95}{2}
Qisqartirish.
x=47 x=-48
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.