x uchun yechish
x=\frac{\sqrt{69978}}{139956}\approx 0,001890119
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(35x\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
35^{2}x^{2}\left(\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
\left(35x\sqrt{457}\right)^{2} ni kengaytirish.
1225x^{2}\left(\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
2 daraja ko‘rsatkichini 35 ga hisoblang va 1225 ni qiymatni oling.
1225x^{2}\times 457=\left(\sqrt{x^{2}+2}\right)^{2}
\sqrt{457} kvadrati – 457.
559825x^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
559825 hosil qilish uchun 1225 va 457 ni ko'paytirish.
559825x^{2}=x^{2}+2
2 daraja ko‘rsatkichini \sqrt{x^{2}+2} ga hisoblang va x^{2}+2 ni qiymatni oling.
559825x^{2}-x^{2}=2
Ikkala tarafdan x^{2} ni ayirish.
559824x^{2}=2
559824x^{2} ni olish uchun 559825x^{2} va -x^{2} ni birlashtirish.
x^{2}=\frac{2}{559824}
Ikki tarafini 559824 ga bo‘ling.
x^{2}=\frac{1}{279912}
\frac{2}{559824} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{69978}}{139956} x=-\frac{\sqrt{69978}}{139956}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
35\times \frac{\sqrt{69978}}{139956}\sqrt{457}=\sqrt{\left(\frac{\sqrt{69978}}{139956}\right)^{2}+2}
35x\sqrt{457}=\sqrt{x^{2}+2} tenglamasida x uchun \frac{\sqrt{69978}}{139956} ni almashtiring.
\frac{35}{139956}\times 31979946^{\frac{1}{2}}=\frac{35}{139956}\times 31979946^{\frac{1}{2}}
Qisqartirish. x=\frac{\sqrt{69978}}{139956} tenglamani qoniqtiradi.
35\left(-\frac{\sqrt{69978}}{139956}\right)\sqrt{457}=\sqrt{\left(-\frac{\sqrt{69978}}{139956}\right)^{2}+2}
35x\sqrt{457}=\sqrt{x^{2}+2} tenglamasida x uchun -\frac{\sqrt{69978}}{139956} ni almashtiring.
-\frac{35}{139956}\times 31979946^{\frac{1}{2}}=\frac{35}{139956}\times 31979946^{\frac{1}{2}}
Qisqartirish. x=-\frac{\sqrt{69978}}{139956} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=\frac{\sqrt{69978}}{139956}
35\sqrt{457}x=\sqrt{x^{2}+2} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}