x uchun yechish
x=12
x=20
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(32-x\right)=240
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
32x-x^{2}=240
x ga 32-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
32x-x^{2}-240=0
Ikkala tarafdan 240 ni ayirish.
-x^{2}+32x-240=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-32±\sqrt{32^{2}-4\left(-1\right)\left(-240\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 32 ni b va -240 ni c bilan almashtiring.
x=\frac{-32±\sqrt{1024-4\left(-1\right)\left(-240\right)}}{2\left(-1\right)}
32 kvadratini chiqarish.
x=\frac{-32±\sqrt{1024+4\left(-240\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{1024-960}}{2\left(-1\right)}
4 ni -240 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{64}}{2\left(-1\right)}
1024 ni -960 ga qo'shish.
x=\frac{-32±8}{2\left(-1\right)}
64 ning kvadrat ildizini chiqarish.
x=\frac{-32±8}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{24}{-2}
x=\frac{-32±8}{-2} tenglamasini yeching, bunda ± musbat. -32 ni 8 ga qo'shish.
x=12
-24 ni -2 ga bo'lish.
x=-\frac{40}{-2}
x=\frac{-32±8}{-2} tenglamasini yeching, bunda ± manfiy. -32 dan 8 ni ayirish.
x=20
-40 ni -2 ga bo'lish.
x=12 x=20
Tenglama yechildi.
x\left(32-x\right)=240
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
32x-x^{2}=240
x ga 32-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}+32x=240
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+32x}{-1}=\frac{240}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{32}{-1}x=\frac{240}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-32x=\frac{240}{-1}
32 ni -1 ga bo'lish.
x^{2}-32x=-240
240 ni -1 ga bo'lish.
x^{2}-32x+\left(-16\right)^{2}=-240+\left(-16\right)^{2}
-32 ni bo‘lish, x shartining koeffitsienti, 2 ga -16 olish uchun. Keyin, -16 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-32x+256=-240+256
-16 kvadratini chiqarish.
x^{2}-32x+256=16
-240 ni 256 ga qo'shish.
\left(x-16\right)^{2}=16
x^{2}-32x+256 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-16\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-16=4 x-16=-4
Qisqartirish.
x=20 x=12
16 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}