x uchun yechish (complex solution)
x=\frac{-1+\sqrt{23}i}{6}\approx -0,166666667+0,799305254i
x=\frac{-\sqrt{23}i-1}{6}\approx -0,166666667-0,799305254i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-x=-2\left(x^{2}+x+1\right)
x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x=-2x^{2}-2x-2
-2 ga x^{2}+x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x+2x^{2}=-2x-2
2x^{2} ni ikki tarafga qo’shing.
3x^{2}-x=-2x-2
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}-x+2x=-2
2x ni ikki tarafga qo’shing.
3x^{2}+x=-2
x ni olish uchun -x va 2x ni birlashtirish.
3x^{2}+x+2=0
2 ni ikki tarafga qo’shing.
x=\frac{-1±\sqrt{1^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 1 ni b va 2 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 3\times 2}}{2\times 3}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-23}}{2\times 3}
1 ni -24 ga qo'shish.
x=\frac{-1±\sqrt{23}i}{2\times 3}
-23 ning kvadrat ildizini chiqarish.
x=\frac{-1±\sqrt{23}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{-1+\sqrt{23}i}{6}
x=\frac{-1±\sqrt{23}i}{6} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i-1}{6}
x=\frac{-1±\sqrt{23}i}{6} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{23} ni ayirish.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Tenglama yechildi.
x^{2}-x=-2\left(x^{2}+x+1\right)
x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x=-2x^{2}-2x-2
-2 ga x^{2}+x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x+2x^{2}=-2x-2
2x^{2} ni ikki tarafga qo’shing.
3x^{2}-x=-2x-2
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}-x+2x=-2
2x ni ikki tarafga qo’shing.
3x^{2}+x=-2
x ni olish uchun -x va 2x ni birlashtirish.
\frac{3x^{2}+x}{3}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{1}{3}x=-\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{6}\right)^{2}=-\frac{23}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{6}=\frac{\sqrt{23}i}{6} x+\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Qisqartirish.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}