x uchun yechish
x=\sqrt{374}+23\approx 42,339079606
x=23-\sqrt{374}\approx 3,660920394
Grafik
Baham ko'rish
Klipbordga nusxa olish
-20x^{2}+920x=3100
x ga -20x+920 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-20x^{2}+920x-3100=0
Ikkala tarafdan 3100 ni ayirish.
x=\frac{-920±\sqrt{920^{2}-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -20 ni a, 920 ni b va -3100 ni c bilan almashtiring.
x=\frac{-920±\sqrt{846400-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
920 kvadratini chiqarish.
x=\frac{-920±\sqrt{846400+80\left(-3100\right)}}{2\left(-20\right)}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-920±\sqrt{846400-248000}}{2\left(-20\right)}
80 ni -3100 marotabaga ko'paytirish.
x=\frac{-920±\sqrt{598400}}{2\left(-20\right)}
846400 ni -248000 ga qo'shish.
x=\frac{-920±40\sqrt{374}}{2\left(-20\right)}
598400 ning kvadrat ildizini chiqarish.
x=\frac{-920±40\sqrt{374}}{-40}
2 ni -20 marotabaga ko'paytirish.
x=\frac{40\sqrt{374}-920}{-40}
x=\frac{-920±40\sqrt{374}}{-40} tenglamasini yeching, bunda ± musbat. -920 ni 40\sqrt{374} ga qo'shish.
x=23-\sqrt{374}
-920+40\sqrt{374} ni -40 ga bo'lish.
x=\frac{-40\sqrt{374}-920}{-40}
x=\frac{-920±40\sqrt{374}}{-40} tenglamasini yeching, bunda ± manfiy. -920 dan 40\sqrt{374} ni ayirish.
x=\sqrt{374}+23
-920-40\sqrt{374} ni -40 ga bo'lish.
x=23-\sqrt{374} x=\sqrt{374}+23
Tenglama yechildi.
-20x^{2}+920x=3100
x ga -20x+920 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-20x^{2}+920x}{-20}=\frac{3100}{-20}
Ikki tarafini -20 ga bo‘ling.
x^{2}+\frac{920}{-20}x=\frac{3100}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x^{2}-46x=\frac{3100}{-20}
920 ni -20 ga bo'lish.
x^{2}-46x=-155
3100 ni -20 ga bo'lish.
x^{2}-46x+\left(-23\right)^{2}=-155+\left(-23\right)^{2}
-46 ni bo‘lish, x shartining koeffitsienti, 2 ga -23 olish uchun. Keyin, -23 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-46x+529=-155+529
-23 kvadratini chiqarish.
x^{2}-46x+529=374
-155 ni 529 ga qo'shish.
\left(x-23\right)^{2}=374
x^{2}-46x+529 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-23\right)^{2}}=\sqrt{374}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-23=\sqrt{374} x-23=-\sqrt{374}
Qisqartirish.
x=\sqrt{374}+23 x=23-\sqrt{374}
23 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}