x ^ { y } - d x - k = 0
d uchun yechish (complex solution)
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }k=0\end{matrix}\right,
k uchun yechish (complex solution)
k=x^{y}-dx
d uchun yechish
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x>0\text{ or }\left(Denominator(y)\text{bmod}2=1\text{ and }x<0\right)\\d\in \mathrm{R}\text{, }&x=0\text{ and }k=0\text{ and }y>0\end{matrix}\right,
k uchun yechish
k=x^{y}-dx
\left(x<0\text{ and }Denominator(y)\text{bmod}2=1\right)\text{ or }\left(x=0\text{ and }y>0\right)\text{ or }x>0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-dx-k=-x^{y}
Ikkala tarafdan x^{y} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-dx=-x^{y}+k
k ni ikki tarafga qo’shing.
\left(-x\right)d=k-x^{y}
Tenglama standart shaklda.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Ikki tarafini -x ga bo‘ling.
d=\frac{k-x^{y}}{-x}
-x ga bo'lish -x ga ko'paytirishni bekor qiladi.
d=-\frac{k-x^{y}}{x}
k-x^{y} ni -x ga bo'lish.
-dx-k=-x^{y}
Ikkala tarafdan x^{y} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-k=-x^{y}+dx
dx ni ikki tarafga qo’shing.
-k=dx-x^{y}
Tenglama standart shaklda.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Ikki tarafini -1 ga bo‘ling.
k=\frac{dx-x^{y}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
k=x^{y}-dx
-x^{y}+dx ni -1 ga bo'lish.
-dx-k=-x^{y}
Ikkala tarafdan x^{y} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-dx=-x^{y}+k
k ni ikki tarafga qo’shing.
\left(-x\right)d=k-x^{y}
Tenglama standart shaklda.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Ikki tarafini -x ga bo‘ling.
d=\frac{k-x^{y}}{-x}
-x ga bo'lish -x ga ko'paytirishni bekor qiladi.
d=-\frac{k-x^{y}}{x}
k-x^{y} ni -x ga bo'lish.
-dx-k=-x^{y}
Ikkala tarafdan x^{y} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-k=-x^{y}+dx
dx ni ikki tarafga qo’shing.
-k=dx-x^{y}
Tenglama standart shaklda.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Ikki tarafini -1 ga bo‘ling.
k=\frac{dx-x^{y}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
k=x^{y}-dx
-x^{y}+dx ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}