Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-x-6=8
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-x-6-8=8-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x^{2}-x-6-8=0
O‘zidan 8 ayirilsa 0 qoladi.
x^{2}-x-14=0
-6 dan 8 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-14\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va -14 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+56}}{2}
-4 ni -14 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{57}}{2}
1 ni 56 ga qo'shish.
x=\frac{1±\sqrt{57}}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{\sqrt{57}+1}{2}
x=\frac{1±\sqrt{57}}{2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{57} ga qo'shish.
x=\frac{1-\sqrt{57}}{2}
x=\frac{1±\sqrt{57}}{2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{57} ni ayirish.
x=\frac{\sqrt{57}+1}{2} x=\frac{1-\sqrt{57}}{2}
Tenglama yechildi.
x^{2}-x-6=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-x-6-\left(-6\right)=8-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-x=8-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
x^{2}-x=14
8 dan -6 ni ayirish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=14+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=14+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{57}{4}
14 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{57}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{57}}{2} x-\frac{1}{2}=-\frac{\sqrt{57}}{2}
Qisqartirish.
x=\frac{\sqrt{57}+1}{2} x=\frac{1-\sqrt{57}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.