Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-x=\frac{120}{7}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-x-\frac{120}{7}=\frac{120}{7}-\frac{120}{7}
Tenglamaning ikkala tarafidan \frac{120}{7} ni ayirish.
x^{2}-x-\frac{120}{7}=0
O‘zidan \frac{120}{7} ayirilsa 0 qoladi.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{120}{7}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va -\frac{120}{7} ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{480}{7}}}{2}
-4 ni -\frac{120}{7} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{\frac{487}{7}}}{2}
1 ni \frac{480}{7} ga qo'shish.
x=\frac{-\left(-1\right)±\frac{\sqrt{3409}}{7}}{2}
\frac{487}{7} ning kvadrat ildizini chiqarish.
x=\frac{1±\frac{\sqrt{3409}}{7}}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{\frac{\sqrt{3409}}{7}+1}{2}
x=\frac{1±\frac{\sqrt{3409}}{7}}{2} tenglamasini yeching, bunda ± musbat. 1 ni \frac{\sqrt{3409}}{7} ga qo'shish.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2}
1+\frac{\sqrt{3409}}{7} ni 2 ga bo'lish.
x=\frac{-\frac{\sqrt{3409}}{7}+1}{2}
x=\frac{1±\frac{\sqrt{3409}}{7}}{2} tenglamasini yeching, bunda ± manfiy. 1 dan \frac{\sqrt{3409}}{7} ni ayirish.
x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
1-\frac{\sqrt{3409}}{7} ni 2 ga bo'lish.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2} x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
Tenglama yechildi.
x^{2}-x=\frac{120}{7}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{120}{7}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{120}{7}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{487}{28}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{120}{7} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=\frac{487}{28}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{487}{28}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{3409}}{14} x-\frac{1}{2}=-\frac{\sqrt{3409}}{14}
Qisqartirish.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2} x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.