Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-97x+108=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-97\right)±\sqrt{\left(-97\right)^{2}-4\times 108}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-97\right)±\sqrt{9409-4\times 108}}{2}
-97 kvadratini chiqarish.
x=\frac{-\left(-97\right)±\sqrt{9409-432}}{2}
-4 ni 108 marotabaga ko'paytirish.
x=\frac{-\left(-97\right)±\sqrt{8977}}{2}
9409 ni -432 ga qo'shish.
x=\frac{97±\sqrt{8977}}{2}
-97 ning teskarisi 97 ga teng.
x=\frac{\sqrt{8977}+97}{2}
x=\frac{97±\sqrt{8977}}{2} tenglamasini yeching, bunda ± musbat. 97 ni \sqrt{8977} ga qo'shish.
x=\frac{97-\sqrt{8977}}{2}
x=\frac{97±\sqrt{8977}}{2} tenglamasini yeching, bunda ± manfiy. 97 dan \sqrt{8977} ni ayirish.
x^{2}-97x+108=\left(x-\frac{\sqrt{8977}+97}{2}\right)\left(x-\frac{97-\sqrt{8977}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{97+\sqrt{8977}}{2} ga va x_{2} uchun \frac{97-\sqrt{8977}}{2} ga bo‘ling.