Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-9x+13=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 13}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va 13 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 13}}{2}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-52}}{2}
-4 ni 13 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{29}}{2}
81 ni -52 ga qo'shish.
x=\frac{9±\sqrt{29}}{2}
-9 ning teskarisi 9 ga teng.
x=\frac{\sqrt{29}+9}{2}
x=\frac{9±\sqrt{29}}{2} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{29} ga qo'shish.
x=\frac{9-\sqrt{29}}{2}
x=\frac{9±\sqrt{29}}{2} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{29} ni ayirish.
x=\frac{\sqrt{29}+9}{2} x=\frac{9-\sqrt{29}}{2}
Tenglama yechildi.
x^{2}-9x+13=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-9x+13-13=-13
Tenglamaning ikkala tarafidan 13 ni ayirish.
x^{2}-9x=-13
O‘zidan 13 ayirilsa 0 qoladi.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-13+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-13+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{29}{4}
-13 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{29}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{\sqrt{29}}{2} x-\frac{9}{2}=-\frac{\sqrt{29}}{2}
Qisqartirish.
x=\frac{\sqrt{29}+9}{2} x=\frac{9-\sqrt{29}}{2}
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.