Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-8x-6280=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6280\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6280\right)}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+25120}}{2}
-4 ni -6280 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{25184}}{2}
64 ni 25120 ga qo'shish.
x=\frac{-\left(-8\right)±4\sqrt{1574}}{2}
25184 ning kvadrat ildizini chiqarish.
x=\frac{8±4\sqrt{1574}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{4\sqrt{1574}+8}{2}
x=\frac{8±4\sqrt{1574}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 4\sqrt{1574} ga qo'shish.
x=2\sqrt{1574}+4
8+4\sqrt{1574} ni 2 ga bo'lish.
x=\frac{8-4\sqrt{1574}}{2}
x=\frac{8±4\sqrt{1574}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 4\sqrt{1574} ni ayirish.
x=4-2\sqrt{1574}
8-4\sqrt{1574} ni 2 ga bo'lish.
x^{2}-8x-6280=\left(x-\left(2\sqrt{1574}+4\right)\right)\left(x-\left(4-2\sqrt{1574}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 4+2\sqrt{1574} ga va x_{2} uchun 4-2\sqrt{1574} ga bo‘ling.