x uchun yechish
x = \frac{\sqrt{401} + 21}{2} \approx 20,512492197
x=\frac{21-\sqrt{401}}{2}\approx 0,487507803
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-8x+10-13x=0
Ikkala tarafdan 13x ni ayirish.
x^{2}-21x+10=0
-21x ni olish uchun -8x va -13x ni birlashtirish.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -21 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 10}}{2}
-21 kvadratini chiqarish.
x=\frac{-\left(-21\right)±\sqrt{441-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{401}}{2}
441 ni -40 ga qo'shish.
x=\frac{21±\sqrt{401}}{2}
-21 ning teskarisi 21 ga teng.
x=\frac{\sqrt{401}+21}{2}
x=\frac{21±\sqrt{401}}{2} tenglamasini yeching, bunda ± musbat. 21 ni \sqrt{401} ga qo'shish.
x=\frac{21-\sqrt{401}}{2}
x=\frac{21±\sqrt{401}}{2} tenglamasini yeching, bunda ± manfiy. 21 dan \sqrt{401} ni ayirish.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Tenglama yechildi.
x^{2}-8x+10-13x=0
Ikkala tarafdan 13x ni ayirish.
x^{2}-21x+10=0
-21x ni olish uchun -8x va -13x ni birlashtirish.
x^{2}-21x=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-10+\left(-\frac{21}{2}\right)^{2}
-21 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{2} olish uchun. Keyin, -\frac{21}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-21x+\frac{441}{4}=-10+\frac{441}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{2} kvadratini chiqarish.
x^{2}-21x+\frac{441}{4}=\frac{401}{4}
-10 ni \frac{441}{4} ga qo'shish.
\left(x-\frac{21}{2}\right)^{2}=\frac{401}{4}
x^{2}-21x+\frac{441}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{2}=\frac{\sqrt{401}}{2} x-\frac{21}{2}=-\frac{\sqrt{401}}{2}
Qisqartirish.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
\frac{21}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}