Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-77x+70=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-77\right)±\sqrt{\left(-77\right)^{2}-4\times 70}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-77\right)±\sqrt{5929-4\times 70}}{2}
-77 kvadratini chiqarish.
x=\frac{-\left(-77\right)±\sqrt{5929-280}}{2}
-4 ni 70 marotabaga ko'paytirish.
x=\frac{-\left(-77\right)±\sqrt{5649}}{2}
5929 ni -280 ga qo'shish.
x=\frac{77±\sqrt{5649}}{2}
-77 ning teskarisi 77 ga teng.
x=\frac{\sqrt{5649}+77}{2}
x=\frac{77±\sqrt{5649}}{2} tenglamasini yeching, bunda ± musbat. 77 ni \sqrt{5649} ga qo'shish.
x=\frac{77-\sqrt{5649}}{2}
x=\frac{77±\sqrt{5649}}{2} tenglamasini yeching, bunda ± manfiy. 77 dan \sqrt{5649} ni ayirish.
x^{2}-77x+70=\left(x-\frac{\sqrt{5649}+77}{2}\right)\left(x-\frac{77-\sqrt{5649}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{77+\sqrt{5649}}{2} ga va x_{2} uchun \frac{77-\sqrt{5649}}{2} ga bo‘ling.