Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-76x=-68
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-76x-\left(-68\right)=-68-\left(-68\right)
68 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-76x-\left(-68\right)=0
O‘zidan -68 ayirilsa 0 qoladi.
x^{2}-76x+68=0
0 dan -68 ni ayirish.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 68}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -76 ni b va 68 ni c bilan almashtiring.
x=\frac{-\left(-76\right)±\sqrt{5776-4\times 68}}{2}
-76 kvadratini chiqarish.
x=\frac{-\left(-76\right)±\sqrt{5776-272}}{2}
-4 ni 68 marotabaga ko'paytirish.
x=\frac{-\left(-76\right)±\sqrt{5504}}{2}
5776 ni -272 ga qo'shish.
x=\frac{-\left(-76\right)±8\sqrt{86}}{2}
5504 ning kvadrat ildizini chiqarish.
x=\frac{76±8\sqrt{86}}{2}
-76 ning teskarisi 76 ga teng.
x=\frac{8\sqrt{86}+76}{2}
x=\frac{76±8\sqrt{86}}{2} tenglamasini yeching, bunda ± musbat. 76 ni 8\sqrt{86} ga qo'shish.
x=4\sqrt{86}+38
76+8\sqrt{86} ni 2 ga bo'lish.
x=\frac{76-8\sqrt{86}}{2}
x=\frac{76±8\sqrt{86}}{2} tenglamasini yeching, bunda ± manfiy. 76 dan 8\sqrt{86} ni ayirish.
x=38-4\sqrt{86}
76-8\sqrt{86} ni 2 ga bo'lish.
x=4\sqrt{86}+38 x=38-4\sqrt{86}
Tenglama yechildi.
x^{2}-76x=-68
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-76x+\left(-38\right)^{2}=-68+\left(-38\right)^{2}
-76 ni bo‘lish, x shartining koeffitsienti, 2 ga -38 olish uchun. Keyin, -38 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-76x+1444=-68+1444
-38 kvadratini chiqarish.
x^{2}-76x+1444=1376
-68 ni 1444 ga qo'shish.
\left(x-38\right)^{2}=1376
x^{2}-76x+1444 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-38\right)^{2}}=\sqrt{1376}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-38=4\sqrt{86} x-38=-4\sqrt{86}
Qisqartirish.
x=4\sqrt{86}+38 x=38-4\sqrt{86}
38 ni tenglamaning ikkala tarafiga qo'shish.