Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-7 ab=-18
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-7x-18 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-18 2,-9 3,-6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -18-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-18=-17 2-9=-7 3-6=-3
Har bir juftlik yigʻindisini hisoblang.
a=-9 b=2
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(x-9\right)\left(x+2\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=9 x=-2
Tenglamani yechish uchun x-9=0 va x+2=0 ni yeching.
a+b=-7 ab=1\left(-18\right)=-18
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-18 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-18 2,-9 3,-6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -18-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-18=-17 2-9=-7 3-6=-3
Har bir juftlik yigʻindisini hisoblang.
a=-9 b=2
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(x^{2}-9x\right)+\left(2x-18\right)
x^{2}-7x-18 ni \left(x^{2}-9x\right)+\left(2x-18\right) sifatida qaytadan yozish.
x\left(x-9\right)+2\left(x-9\right)
Birinchi guruhda x ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(x-9\right)\left(x+2\right)
Distributiv funktsiyasidan foydalangan holda x-9 umumiy terminini chiqaring.
x=9 x=-2
Tenglamani yechish uchun x-9=0 va x+2=0 ni yeching.
x^{2}-7x-18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-18\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va -18 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-18\right)}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2}
-4 ni -18 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{121}}{2}
49 ni 72 ga qo'shish.
x=\frac{-\left(-7\right)±11}{2}
121 ning kvadrat ildizini chiqarish.
x=\frac{7±11}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{18}{2}
x=\frac{7±11}{2} tenglamasini yeching, bunda ± musbat. 7 ni 11 ga qo'shish.
x=9
18 ni 2 ga bo'lish.
x=-\frac{4}{2}
x=\frac{7±11}{2} tenglamasini yeching, bunda ± manfiy. 7 dan 11 ni ayirish.
x=-2
-4 ni 2 ga bo'lish.
x=9 x=-2
Tenglama yechildi.
x^{2}-7x-18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-7x-18-\left(-18\right)=-\left(-18\right)
18 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-7x=-\left(-18\right)
O‘zidan -18 ayirilsa 0 qoladi.
x^{2}-7x=18
0 dan -18 ni ayirish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=18+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=18+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=\frac{121}{4}
18 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=\frac{121}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{11}{2} x-\frac{7}{2}=-\frac{11}{2}
Qisqartirish.
x=9 x=-2
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.