Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x-10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-10\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -10 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-10\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+40}}{2}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{76}}{2}
36 ni 40 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{19}}{2}
76 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{19}}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{2\sqrt{19}+6}{2}
x=\frac{6±2\sqrt{19}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{19} ga qo'shish.
x=\sqrt{19}+3
6+2\sqrt{19} ni 2 ga bo'lish.
x=\frac{6-2\sqrt{19}}{2}
x=\frac{6±2\sqrt{19}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{19} ni ayirish.
x=3-\sqrt{19}
6-2\sqrt{19} ni 2 ga bo'lish.
x=\sqrt{19}+3 x=3-\sqrt{19}
Tenglama yechildi.
x^{2}-6x-10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-6x-10-\left(-10\right)=-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-6x=-\left(-10\right)
O‘zidan -10 ayirilsa 0 qoladi.
x^{2}-6x=10
0 dan -10 ni ayirish.
x^{2}-6x+\left(-3\right)^{2}=10+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=10+9
-3 kvadratini chiqarish.
x^{2}-6x+9=19
10 ni 9 ga qo'shish.
\left(x-3\right)^{2}=19
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{19}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=\sqrt{19} x-3=-\sqrt{19}
Qisqartirish.
x=\sqrt{19}+3 x=3-\sqrt{19}
3 ni tenglamaning ikkala tarafiga qo'shish.