Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x+9=20
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-6x+9-20=20-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
x^{2}-6x+9-20=0
O‘zidan 20 ayirilsa 0 qoladi.
x^{2}-6x-11=0
9 dan 20 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-11\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -11 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-11\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+44}}{2}
-4 ni -11 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{80}}{2}
36 ni 44 ga qo'shish.
x=\frac{-\left(-6\right)±4\sqrt{5}}{2}
80 ning kvadrat ildizini chiqarish.
x=\frac{6±4\sqrt{5}}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{4\sqrt{5}+6}{2}
x=\frac{6±4\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 4\sqrt{5} ga qo'shish.
x=2\sqrt{5}+3
6+4\sqrt{5} ni 2 ga bo'lish.
x=\frac{6-4\sqrt{5}}{2}
x=\frac{6±4\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 4\sqrt{5} ni ayirish.
x=3-2\sqrt{5}
6-4\sqrt{5} ni 2 ga bo'lish.
x=2\sqrt{5}+3 x=3-2\sqrt{5}
Tenglama yechildi.
x^{2}-6x+9=20
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\left(x-3\right)^{2}=20
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{20}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=2\sqrt{5} x-3=-2\sqrt{5}
Qisqartirish.
x=2\sqrt{5}+3 x=3-2\sqrt{5}
3 ni tenglamaning ikkala tarafiga qo'shish.