Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x+16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 16}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va 16 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 16}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-64}}{2}
-4 ni 16 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{-28}}{2}
36 ni -64 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{7}i}{2}
-28 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{7}i}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{6+2\sqrt{7}i}{2}
x=\frac{6±2\sqrt{7}i}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2i\sqrt{7} ga qo'shish.
x=3+\sqrt{7}i
6+2i\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}i+6}{2}
x=\frac{6±2\sqrt{7}i}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2i\sqrt{7} ni ayirish.
x=-\sqrt{7}i+3
6-2i\sqrt{7} ni 2 ga bo'lish.
x=3+\sqrt{7}i x=-\sqrt{7}i+3
Tenglama yechildi.
x^{2}-6x+16=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-6x+16-16=-16
Tenglamaning ikkala tarafidan 16 ni ayirish.
x^{2}-6x=-16
O‘zidan 16 ayirilsa 0 qoladi.
x^{2}-6x+\left(-3\right)^{2}=-16+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=-16+9
-3 kvadratini chiqarish.
x^{2}-6x+9=-7
-16 ni 9 ga qo'shish.
\left(x-3\right)^{2}=-7
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=\sqrt{7}i x-3=-\sqrt{7}i
Qisqartirish.
x=3+\sqrt{7}i x=-\sqrt{7}i+3
3 ni tenglamaning ikkala tarafiga qo'shish.