x uchun yechish (complex solution)
x=3+\sqrt{2}i\approx 3+1,414213562i
x=-\sqrt{2}i+3\approx 3-1,414213562i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-6x+11=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 11}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va 11 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 11}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-44}}{2}
-4 ni 11 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{-8}}{2}
36 ni -44 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{2}i}{2}
-8 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{2}i}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{6+2\sqrt{2}i}{2}
x=\frac{6±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2i\sqrt{2} ga qo'shish.
x=3+\sqrt{2}i
6+2i\sqrt{2} ni 2 ga bo'lish.
x=\frac{-2\sqrt{2}i+6}{2}
x=\frac{6±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2i\sqrt{2} ni ayirish.
x=-\sqrt{2}i+3
6-2i\sqrt{2} ni 2 ga bo'lish.
x=3+\sqrt{2}i x=-\sqrt{2}i+3
Tenglama yechildi.
x^{2}-6x+11=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-6x+11-11=-11
Tenglamaning ikkala tarafidan 11 ni ayirish.
x^{2}-6x=-11
O‘zidan 11 ayirilsa 0 qoladi.
x^{2}-6x+\left(-3\right)^{2}=-11+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=-11+9
-3 kvadratini chiqarish.
x^{2}-6x+9=-2
-11 ni 9 ga qo'shish.
\left(x-3\right)^{2}=-2
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=\sqrt{2}i x-3=-\sqrt{2}i
Qisqartirish.
x=3+\sqrt{2}i x=-\sqrt{2}i+3
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}