Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-50 ab=-5000
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-50x-5000 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -5000-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Har bir juftlik yigʻindisini hisoblang.
a=-100 b=50
Yechim – -50 yigʻindisini beruvchi juftlik.
\left(x-100\right)\left(x+50\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=100 x=-50
Tenglamani yechish uchun x-100=0 va x+50=0 ni yeching.
a+b=-50 ab=1\left(-5000\right)=-5000
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-5000 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -5000-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Har bir juftlik yigʻindisini hisoblang.
a=-100 b=50
Yechim – -50 yigʻindisini beruvchi juftlik.
\left(x^{2}-100x\right)+\left(50x-5000\right)
x^{2}-50x-5000 ni \left(x^{2}-100x\right)+\left(50x-5000\right) sifatida qaytadan yozish.
x\left(x-100\right)+50\left(x-100\right)
Birinchi guruhda x ni va ikkinchi guruhda 50 ni faktordan chiqaring.
\left(x-100\right)\left(x+50\right)
Distributiv funktsiyasidan foydalangan holda x-100 umumiy terminini chiqaring.
x=100 x=-50
Tenglamani yechish uchun x-100=0 va x+50=0 ni yeching.
x^{2}-50x-5000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-5000\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -50 ni b va -5000 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-5000\right)}}{2}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500+20000}}{2}
-4 ni -5000 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{22500}}{2}
2500 ni 20000 ga qo'shish.
x=\frac{-\left(-50\right)±150}{2}
22500 ning kvadrat ildizini chiqarish.
x=\frac{50±150}{2}
-50 ning teskarisi 50 ga teng.
x=\frac{200}{2}
x=\frac{50±150}{2} tenglamasini yeching, bunda ± musbat. 50 ni 150 ga qo'shish.
x=100
200 ni 2 ga bo'lish.
x=-\frac{100}{2}
x=\frac{50±150}{2} tenglamasini yeching, bunda ± manfiy. 50 dan 150 ni ayirish.
x=-50
-100 ni 2 ga bo'lish.
x=100 x=-50
Tenglama yechildi.
x^{2}-50x-5000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-50x-5000-\left(-5000\right)=-\left(-5000\right)
5000 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-50x=-\left(-5000\right)
O‘zidan -5000 ayirilsa 0 qoladi.
x^{2}-50x=5000
0 dan -5000 ni ayirish.
x^{2}-50x+\left(-25\right)^{2}=5000+\left(-25\right)^{2}
-50 ni bo‘lish, x shartining koeffitsienti, 2 ga -25 olish uchun. Keyin, -25 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-50x+625=5000+625
-25 kvadratini chiqarish.
x^{2}-50x+625=5625
5000 ni 625 ga qo'shish.
\left(x-25\right)^{2}=5625
x^{2}-50x+625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-25\right)^{2}}=\sqrt{5625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-25=75 x-25=-75
Qisqartirish.
x=100 x=-50
25 ni tenglamaning ikkala tarafiga qo'shish.