x uchun yechish
x = \frac{\sqrt{313} + 21}{8} \approx 4,836475752
x=\frac{21-\sqrt{313}}{8}\approx 0,413524248
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-5x+3-\frac{1}{4}x=1
Ikkala tarafdan \frac{1}{4}x ni ayirish.
x^{2}-\frac{21}{4}x+3=1
-\frac{21}{4}x ni olish uchun -5x va -\frac{1}{4}x ni birlashtirish.
x^{2}-\frac{21}{4}x+3-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-\frac{21}{4}x+2=0
2 olish uchun 3 dan 1 ni ayirish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\left(-\frac{21}{4}\right)^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{21}{4} ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{441}{16}-4\times 2}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{4} kvadratini chiqarish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{441}{16}-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{313}{16}}}{2}
\frac{441}{16} ni -8 ga qo'shish.
x=\frac{-\left(-\frac{21}{4}\right)±\frac{\sqrt{313}}{4}}{2}
\frac{313}{16} ning kvadrat ildizini chiqarish.
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2}
-\frac{21}{4} ning teskarisi \frac{21}{4} ga teng.
x=\frac{\sqrt{313}+21}{2\times 4}
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2} tenglamasini yeching, bunda ± musbat. \frac{21}{4} ni \frac{\sqrt{313}}{4} ga qo'shish.
x=\frac{\sqrt{313}+21}{8}
\frac{21+\sqrt{313}}{4} ni 2 ga bo'lish.
x=\frac{21-\sqrt{313}}{2\times 4}
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2} tenglamasini yeching, bunda ± manfiy. \frac{21}{4} dan \frac{\sqrt{313}}{4} ni ayirish.
x=\frac{21-\sqrt{313}}{8}
\frac{21-\sqrt{313}}{4} ni 2 ga bo'lish.
x=\frac{\sqrt{313}+21}{8} x=\frac{21-\sqrt{313}}{8}
Tenglama yechildi.
x^{2}-5x+3-\frac{1}{4}x=1
Ikkala tarafdan \frac{1}{4}x ni ayirish.
x^{2}-\frac{21}{4}x+3=1
-\frac{21}{4}x ni olish uchun -5x va -\frac{1}{4}x ni birlashtirish.
x^{2}-\frac{21}{4}x=1-3
Ikkala tarafdan 3 ni ayirish.
x^{2}-\frac{21}{4}x=-2
-2 olish uchun 1 dan 3 ni ayirish.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=-2+\left(-\frac{21}{8}\right)^{2}
-\frac{21}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{8} olish uchun. Keyin, -\frac{21}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{21}{4}x+\frac{441}{64}=-2+\frac{441}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{8} kvadratini chiqarish.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{313}{64}
-2 ni \frac{441}{64} ga qo'shish.
\left(x-\frac{21}{8}\right)^{2}=\frac{313}{64}
x^{2}-\frac{21}{4}x+\frac{441}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{313}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{8}=\frac{\sqrt{313}}{8} x-\frac{21}{8}=-\frac{\sqrt{313}}{8}
Qisqartirish.
x=\frac{\sqrt{313}+21}{8} x=\frac{21-\sqrt{313}}{8}
\frac{21}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}