Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-5x+3-\frac{1}{4}x=1
Ikkala tarafdan \frac{1}{4}x ni ayirish.
x^{2}-\frac{21}{4}x+3=1
-\frac{21}{4}x ni olish uchun -5x va -\frac{1}{4}x ni birlashtirish.
x^{2}-\frac{21}{4}x+3-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-\frac{21}{4}x+2=0
2 olish uchun 3 dan 1 ni ayirish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\left(-\frac{21}{4}\right)^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{21}{4} ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{441}{16}-4\times 2}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{4} kvadratini chiqarish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{441}{16}-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{21}{4}\right)±\sqrt{\frac{313}{16}}}{2}
\frac{441}{16} ni -8 ga qo'shish.
x=\frac{-\left(-\frac{21}{4}\right)±\frac{\sqrt{313}}{4}}{2}
\frac{313}{16} ning kvadrat ildizini chiqarish.
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2}
-\frac{21}{4} ning teskarisi \frac{21}{4} ga teng.
x=\frac{\sqrt{313}+21}{2\times 4}
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2} tenglamasini yeching, bunda ± musbat. \frac{21}{4} ni \frac{\sqrt{313}}{4} ga qo'shish.
x=\frac{\sqrt{313}+21}{8}
\frac{21+\sqrt{313}}{4} ni 2 ga bo'lish.
x=\frac{21-\sqrt{313}}{2\times 4}
x=\frac{\frac{21}{4}±\frac{\sqrt{313}}{4}}{2} tenglamasini yeching, bunda ± manfiy. \frac{21}{4} dan \frac{\sqrt{313}}{4} ni ayirish.
x=\frac{21-\sqrt{313}}{8}
\frac{21-\sqrt{313}}{4} ni 2 ga bo'lish.
x=\frac{\sqrt{313}+21}{8} x=\frac{21-\sqrt{313}}{8}
Tenglama yechildi.
x^{2}-5x+3-\frac{1}{4}x=1
Ikkala tarafdan \frac{1}{4}x ni ayirish.
x^{2}-\frac{21}{4}x+3=1
-\frac{21}{4}x ni olish uchun -5x va -\frac{1}{4}x ni birlashtirish.
x^{2}-\frac{21}{4}x=1-3
Ikkala tarafdan 3 ni ayirish.
x^{2}-\frac{21}{4}x=-2
-2 olish uchun 1 dan 3 ni ayirish.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=-2+\left(-\frac{21}{8}\right)^{2}
-\frac{21}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{8} olish uchun. Keyin, -\frac{21}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{21}{4}x+\frac{441}{64}=-2+\frac{441}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{8} kvadratini chiqarish.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{313}{64}
-2 ni \frac{441}{64} ga qo'shish.
\left(x-\frac{21}{8}\right)^{2}=\frac{313}{64}
x^{2}-\frac{21}{4}x+\frac{441}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{313}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{8}=\frac{\sqrt{313}}{8} x-\frac{21}{8}=-\frac{\sqrt{313}}{8}
Qisqartirish.
x=\frac{\sqrt{313}+21}{8} x=\frac{21-\sqrt{313}}{8}
\frac{21}{8} ni tenglamaning ikkala tarafiga qo'shish.