Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x-4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{32}}{2}
16 ni 16 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{2}}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{4\sqrt{2}+4}{2}
x=\frac{4±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{2} ga qo'shish.
x=2\sqrt{2}+2
4+4\sqrt{2} ni 2 ga bo'lish.
x=\frac{4-4\sqrt{2}}{2}
x=\frac{4±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{2} ni ayirish.
x=2-2\sqrt{2}
4-4\sqrt{2} ni 2 ga bo'lish.
x^{2}-4x-4=\left(x-\left(2\sqrt{2}+2\right)\right)\left(x-\left(2-2\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2+2\sqrt{2} ga va x_{2} uchun 2-2\sqrt{2} ga bo‘ling.