Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}-8x+7=0
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-3\right)\times 7}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -8 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-3\right)\times 7}}{2\left(-3\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+12\times 7}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+84}}{2\left(-3\right)}
12 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{148}}{2\left(-3\right)}
64 ni 84 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{37}}{2\left(-3\right)}
148 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{37}}{2\left(-3\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±2\sqrt{37}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{37}+8}{-6}
x=\frac{8±2\sqrt{37}}{-6} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{37} ga qo'shish.
x=\frac{-\sqrt{37}-4}{3}
8+2\sqrt{37} ni -6 ga bo'lish.
x=\frac{8-2\sqrt{37}}{-6}
x=\frac{8±2\sqrt{37}}{-6} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{37} ni ayirish.
x=\frac{\sqrt{37}-4}{3}
8-2\sqrt{37} ni -6 ga bo'lish.
x=\frac{-\sqrt{37}-4}{3} x=\frac{\sqrt{37}-4}{3}
Tenglama yechildi.
-3x^{2}-8x+7=0
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}-8x=-7
Ikkala tarafdan 7 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-3x^{2}-8x}{-3}=-\frac{7}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{8}{-3}\right)x=-\frac{7}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{3}x=-\frac{7}{-3}
-8 ni -3 ga bo'lish.
x^{2}+\frac{8}{3}x=\frac{7}{3}
-7 ni -3 ga bo'lish.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{7}{3}+\left(\frac{4}{3}\right)^{2}
\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{3} olish uchun. Keyin, \frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{7}{3}+\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{3} kvadratini chiqarish.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{37}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{3} ni \frac{16}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{3}\right)^{2}=\frac{37}{9}
x^{2}+\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{37}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{3}=\frac{\sqrt{37}}{3} x+\frac{4}{3}=-\frac{\sqrt{37}}{3}
Qisqartirish.
x=\frac{\sqrt{37}-4}{3} x=\frac{-\sqrt{37}-4}{3}
Tenglamaning ikkala tarafidan \frac{4}{3} ni ayirish.