Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

factor(-3x^{2}+4+8x)
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}+8x+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{64-4\left(-3\right)\times 4}}{2\left(-3\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+12\times 4}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+48}}{2\left(-3\right)}
12 ni 4 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{112}}{2\left(-3\right)}
64 ni 48 ga qo'shish.
x=\frac{-8±4\sqrt{7}}{2\left(-3\right)}
112 ning kvadrat ildizini chiqarish.
x=\frac{-8±4\sqrt{7}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{4\sqrt{7}-8}{-6}
x=\frac{-8±4\sqrt{7}}{-6} tenglamasini yeching, bunda ± musbat. -8 ni 4\sqrt{7} ga qo'shish.
x=\frac{4-2\sqrt{7}}{3}
-8+4\sqrt{7} ni -6 ga bo'lish.
x=\frac{-4\sqrt{7}-8}{-6}
x=\frac{-8±4\sqrt{7}}{-6} tenglamasini yeching, bunda ± manfiy. -8 dan 4\sqrt{7} ni ayirish.
x=\frac{2\sqrt{7}+4}{3}
-8-4\sqrt{7} ni -6 ga bo'lish.
-3x^{2}+8x+4=-3\left(x-\frac{4-2\sqrt{7}}{3}\right)\left(x-\frac{2\sqrt{7}+4}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{4-2\sqrt{7}}{3} ga va x_{2} uchun \frac{4+2\sqrt{7}}{3} ga bo‘ling.
-3x^{2}+4+8x
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.