Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 ga x^{2}+x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}-4x-8-3x^{2}=4x+4
Ikkala tarafdan 3x^{2} ni ayirish.
-6x^{2}-4x-8=4x+4
-6x^{2} ni olish uchun -3x^{2} va -3x^{2} ni birlashtirish.
-6x^{2}-4x-8-4x=4
Ikkala tarafdan 4x ni ayirish.
-6x^{2}-8x-8=4
-8x ni olish uchun -4x va -4x ni birlashtirish.
-6x^{2}-8x-8-4=0
Ikkala tarafdan 4 ni ayirish.
-6x^{2}-8x-12=0
-12 olish uchun -8 dan 4 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, -8 ni b va -12 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+24\left(-12\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-288}}{2\left(-6\right)}
24 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-224}}{2\left(-6\right)}
64 ni -288 ga qo'shish.
x=\frac{-\left(-8\right)±4\sqrt{14}i}{2\left(-6\right)}
-224 ning kvadrat ildizini chiqarish.
x=\frac{8±4\sqrt{14}i}{2\left(-6\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4\sqrt{14}i}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{8+4\sqrt{14}i}{-12}
x=\frac{8±4\sqrt{14}i}{-12} tenglamasini yeching, bunda ± musbat. 8 ni 4i\sqrt{14} ga qo'shish.
x=\frac{-\sqrt{14}i-2}{3}
8+4i\sqrt{14} ni -12 ga bo'lish.
x=\frac{-4\sqrt{14}i+8}{-12}
x=\frac{8±4\sqrt{14}i}{-12} tenglamasini yeching, bunda ± manfiy. 8 dan 4i\sqrt{14} ni ayirish.
x=\frac{-2+\sqrt{14}i}{3}
8-4i\sqrt{14} ni -12 ga bo'lish.
x=\frac{-\sqrt{14}i-2}{3} x=\frac{-2+\sqrt{14}i}{3}
Tenglama yechildi.
x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 ga x^{2}+x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}-4x-8-3x^{2}=4x+4
Ikkala tarafdan 3x^{2} ni ayirish.
-6x^{2}-4x-8=4x+4
-6x^{2} ni olish uchun -3x^{2} va -3x^{2} ni birlashtirish.
-6x^{2}-4x-8-4x=4
Ikkala tarafdan 4x ni ayirish.
-6x^{2}-8x-8=4
-8x ni olish uchun -4x va -4x ni birlashtirish.
-6x^{2}-8x=4+8
8 ni ikki tarafga qo’shing.
-6x^{2}-8x=12
12 olish uchun 4 va 8'ni qo'shing.
\frac{-6x^{2}-8x}{-6}=\frac{12}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\left(-\frac{8}{-6}\right)x=\frac{12}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{3}x=\frac{12}{-6}
\frac{-8}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{4}{3}x=-2
12 ni -6 ga bo'lish.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-2+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-2+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{14}{9}
-2 ni \frac{4}{9} ga qo'shish.
\left(x+\frac{2}{3}\right)^{2}=-\frac{14}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{14}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{3}=\frac{\sqrt{14}i}{3} x+\frac{2}{3}=-\frac{\sqrt{14}i}{3}
Qisqartirish.
x=\frac{-2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i-2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.